Suppr超能文献

基于高能量效率 MXene 基铝离子微超级电容器岛和可编辑可拉伸桥的双轴拉伸阵列。

Biaxial Stretching Array Based on High-Energy-Efficient MXene-Based Al-Ion Micro-supercapacitor Island and Editable Stretchable Bridge.

机构信息

School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei230601, China.

Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Hefei Comprehensive National Science Center, Anhui University, Hefei230601, China.

出版信息

ACS Appl Mater Interfaces. 2022 Dec 21;14(50):55770-55779. doi: 10.1021/acsami.2c17238. Epub 2022 Dec 8.

Abstract

Employment of multivalent charge carriers with higher charge density to replace frequently used univalent ones can effectively increase the areal capacitance of micro-supercapacitors utilizing few-layered MXene self-assembled electrodes. However, their larger charge density and ionic size usually lead to a sluggish extraction/insertion dynamic between MXene interlayers with limited free space, greatly offsetting the benefits. Herein, we show how to facilitate de-/intercalation of high-valence charge carriers (Al) by using polypyrrole-coated bacterial cellulose (BC@PPy) nanospacers to expand MXene interlayer space. Together with the longitudinal electron transport path between interlayers synchronously constructed by the conductive PPy shell, a significant 496% areal capacitance enhancement (232.79 mF cm) is realized in the fabricated symmetric Al-ion micro-supercapacitors (AMSCs) with the obtained MXene/BC@PPy hybrid film electrodes employing polyacrylamide/1 M AlCl·6HO hydrogel electrolyte relative to the cell with pure MXene film electrodes (39.02 mF cm). Further benefiting from a high output voltage of 1.2 V, the AMSCs acquire an areal energy density up to 45.3 μW h cm. As a device demonstration, we further fabricate a biaxially stretchable AMSC array, simulate its spatial strain distribution during biaxial stretching, and characterize its electrochemical and mechanical properties up to an extreme areal strain of 300%. The proposed rational fabrication paradigm achieves a new level of combined energy density, stretch performance, and architectural simplicity, which presents a route toward a commercially viable stretchable micro energy-storage system with high energy efficiencies.

摘要

多价电荷载流子具有更高的电荷密度,用其取代常用的单价电荷载流子,可以有效提高利用少层 MXene 自组装电极的微超级电容器的面电容。然而,它们更高的电荷密度和离子尺寸通常会导致在有限的自由空间内,MXene 层间的插层/脱层动力学变得缓慢,这大大抵消了其优势。在本文中,我们展示了如何通过使用聚吡咯包覆的细菌纤维素(BC@PPy)纳米间隔物来促进高价电荷载流子(Al)的插层/脱层,从而扩大 MXene 层间的空间。与通过导电 PPy 壳同步构建的层间纵向电子输运路径相结合,在使用聚丙烯酰胺/1 M AlCl·6HO 水凝胶电解质的制备的 MXene/BC@PPy 混合薄膜电极的对称 Al 离子微超级电容器(AMSCs)中实现了 496%的面电容增强(232.79 mF cm),相对于使用纯 MXene 薄膜电极的电池(39.02 mF cm)。进一步受益于 1.2 V 的高输出电压,AMSCs 获得了高达 45.3 μW h cm 的面能量密度。作为器件演示,我们进一步制造了一个双轴可拉伸的 AMSC 阵列,模拟了其在双轴拉伸过程中的空间应变分布,并对其电化学和机械性能进行了表征,直到达到 300%的极限面应变。所提出的合理制造范式实现了一个新的综合能量密度、拉伸性能和架构简单性水平,为具有高能量效率的商业上可行的可拉伸微储能系统提供了一种途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验