Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States; Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, United States.
Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States.
Redox Biol. 2021 Sep;45:102018. doi: 10.1016/j.redox.2021.102018. Epub 2021 May 24.
Hyperhomocysteinemia (HHcy) is an established and potent independent risk factor for degenerative diseases, including cardiovascular disease (CVD), Alzheimer disease, type II diabetes mellitus, and chronic kidney disease. HHcy has been shown to inhibit proliferation and promote inflammatory responses in endothelial cells (EC), and impair endothelial function, a hallmark for vascular injury. However, metabolic processes and molecular mechanisms mediating HHcy-induced endothelial injury remains to be elucidated. This study examined the effects of HHcy on the expression of microRNA (miRNA) and mRNA in human aortic EC treated with a pathophysiologically relevant concentration of homocysteine (Hcy 500 μM). We performed a set of extensive bioinformatics analyses to identify HHcy-altered metabolic and molecular processes. The global functional implications and molecular network were determined by Gene Set Enrichment Analysis (GSEA) followed by Cytoscape analysis. We identified 244 significantly differentially expressed (SDE) mRNA, their relevant functional pathways, and 45 SDE miRNA. HHcy-altered SDE inversely correlated miRNA-mRNA pairs (45 induced/14 reduced mRNA) were discovered and applied to network construction using an experimentally verified database. We established a hypothetical model to describe the biochemical and molecular network with these specified miRNA/mRNA axes, finding: 1) HHcy causes metabolic reprogramming by increasing glucose uptake and oxidation, by glycogen debranching and NAD/CoA synthesis, and by stimulating mitochondrial reactive oxygen species production via NNT/IDH2 suppression-induced NAD/NADP-NADPH/NADP metabolism disruption; 2) HHcy activates inflammatory responses by activating inflammasome-pyroptosis mainly through ↓miR193b→↑CASP-9 signaling and by inducing IL-1β and adhesion molecules through the ↓miR29c→↑NEDD9 and the ↓miR1256→↑ICAM-1 axes, as well as GPCR and interferon α/β signaling; 3) HHcy promotes cell degradation by the activation of lysosome autophagy and ubiquitin proteasome systems; 4) HHcy causes cell cycle arrest at G1/S and S/G2 transitions, suppresses spindle checkpoint complex and cytokinetic abscission, and suppresses proliferation through ↓miRNA335/↑VASH1 and other axes. These findings are in accordance with our previous studies and add a wealth of heretofore-unexplored molecular and metabolic mechanisms underlying HHcy-induced endothelial injury. This is the first study to consider the effects of HHcy on both global mRNA and miRNA expression changes for mechanism identification. Molecular axes and biochemical processes identified in this study are useful not only for the understanding of mechanisms underlying HHcy-induced endothelial injury, but also for discovering therapeutic targets for CVD in general.
高同型半胱氨酸血症(HHcy)是退行性疾病(包括心血管疾病(CVD)、阿尔茨海默病、2 型糖尿病和慢性肾病)的既定和有效独立危险因素。HHcy 已被证明可抑制内皮细胞(EC)的增殖并促进其炎症反应,并损害内皮功能,这是血管损伤的标志。然而,介导 HHcy 诱导的内皮损伤的代谢过程和分子机制仍有待阐明。本研究检测了生理相关浓度同型半胱氨酸(Hcy 500 μM)处理的人主动脉 EC 中 miRNA(miRNA)和 mRNA 表达的 HHcy 影响。我们进行了一系列广泛的生物信息学分析,以鉴定 HHcy 改变的代谢和分子过程。通过基因集富集分析(GSEA)和 Cytoscape 分析确定了全局功能含义和分子网络。我们鉴定了 244 个显着差异表达(SDE)mRNA、其相关功能途径和 45 个 SDE miRNA。HHcy 改变的 SDE 反向相关 miRNA-mRNA 对(45 个诱导/14 个减少 mRNA)被发现,并应用于使用经过实验验证的数据库进行网络构建。我们建立了一个假设模型,使用这些指定的 miRNA/mRNA 轴来描述生化和分子网络,发现:1)HHcy 通过增加葡萄糖摄取和氧化、糖原去分支和 NAD/CoA 合成以及通过抑制 NNT/IDH2 诱导的 NAD/NADP-NADPH/NADP 代谢破坏来刺激线粒体活性氧产生,从而导致代谢重编程;2)HHcy 通过激活炎症小体-细胞焦亡(主要通过↓miR193b→↑CASP-9 信号)和通过↓miR29c→↑NEDD9 和↓miR1256→↑ICAM-1 轴以及 GPCR 和干扰素α/β信号诱导 IL-1β 和粘附分子,激活炎症反应;3)HHcy 通过溶酶体自噬和泛素蛋白酶体系统的激活促进细胞降解;4)HHcy 导致细胞周期在 G1/S 和 S/G2 转换时停滞,抑制纺锤体检查点复合物和胞质分裂分离,并通过↓miRNA335/↑VASH1 和其他轴抑制增殖。这些发现与我们之前的研究一致,并为 HHcy 诱导的内皮损伤提供了丰富的 hitherto 未探索的分子和代谢机制。这是第一项考虑 HHcy 对全局 mRNA 和 miRNA 表达变化影响以确定机制的研究。本研究鉴定的分子轴和生化过程不仅有助于理解 HHcy 诱导的内皮损伤机制,而且有助于发现一般 CVD 的治疗靶点。