John Rohit Abraham, Shah Nimesh, Vishwanath Sujaya Kumar, Ng Si En, Febriansyah Benny, Jagadeeswararao Metikoti, Chang Chip-Hong, Basu Arindam, Mathews Nripan
School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore.
Nat Commun. 2021 Jun 17;12(1):3681. doi: 10.1038/s41467-021-24057-0.
Physical Unclonable Functions (PUFs) address the inherent limitations of conventional hardware security solutions in edge-computing devices. Despite impressive demonstrations with silicon circuits and crossbars of oxide memristors, realizing efficient roots of trust for resource-constrained hardware remains a significant challenge. Hybrid organic electronic materials with a rich reservoir of exotic switching physics offer an attractive, inexpensive alternative to design efficient cryptographic hardware, but have not been investigated till date. Here, we report a breakthrough security primitive exploiting the switching physics of one dimensional halide perovskite memristors as excellent sources of entropy for secure key generation and device authentication. Measurements of a prototypical 1 kb propyl pyridinium lead iodide (PrPyr[PbI]) weak memristor PUF with a differential write-back strategy reveals near ideal uniformity, uniqueness and reliability without additional area and power overheads. Cycle-to-cycle write variability enables reconfigurability, while in-memory computing empowers a strong recurrent PUF construction to thwart machine learning attacks.
物理不可克隆函数(PUF)解决了边缘计算设备中传统硬件安全解决方案的固有局限性。尽管在硅电路和氧化物忆阻器交叉阵列方面有令人印象深刻的演示,但为资源受限的硬件实现高效的信任根仍然是一项重大挑战。具有丰富奇异开关物理特性的混合有机电子材料为设计高效的加密硬件提供了一种有吸引力且廉价的替代方案,但迄今为止尚未得到研究。在此,我们报告了一项突破性的安全原语,它利用一维卤化物钙钛矿忆阻器的开关物理特性作为安全密钥生成和设备认证的出色熵源。采用差分回写策略对一个典型的1 kb丙基吡啶碘化铅(PrPyr[PbI])弱忆阻器PUF进行测量,结果显示出近乎理想的均匀性、唯一性和可靠性,且无需额外的面积和功耗开销。逐周期写入变异性实现了可重构性,而内存计算则支持构建强大的循环PUF以抵御机器学习攻击。