Mahedi Akram Hossan, Uddin Salah, Hayat Khan Mohammad Yasin, Tarekuzzaman Md, Alsalmi O, Rasheduzzaman Md, Mostafa S M G, Hossen M Moazzam, Hasan Md Zahid
Materials Research and Simulation Lab, Department of Electrical and Electronic Engineering, International Islamic University Chittagong Kumira Chittagong 4318 Bangladesh
Department of Electrical and Electronic Engineering, International Islamic University Chittagong Kumira Chittagong 4318 Bangladesh.
RSC Adv. 2025 Aug 22;15(36):29836-29863. doi: 10.1039/d5ra04739k. eCollection 2025 Aug 18.
The harmful effects and long-term unpredictability of conventional compounds made from lead have driven a more intense quest for practical, stable, and ecologically acceptable lead-free perovskite components. Among the exciting prospects, the pair of perovskites RbNaInI stands out for its special structural, electrical, and optical properties, therefore offering a possible subsequent-generation light-absorbing substance for photovoltaic energy and optoelectronic use. We study RbNaInI holistically in this work, utilizing a mixed computational method. The density functional theory (DFT) computations using WIEN2k verify their cubic 3 organization with an optimal lattice consistency of 12.25 Å, guaranteeing strong structural integrity. Whereas its density of states (DOS) assessment shows substantial hybridization concerning In-5s and I-5p orbitals, boosting charge transport, the semiconductor band structure provides a secondary bandgap of 0.68 eV. Strong absorption in the visible to light spectrum, with a significant coefficient of attraction and low reflectance (<30%), makes optical analysis very appropriate for solar power plants and optoelectronic device uses. Furthermore, its dielectric material functions alongside refractive index, pointing to great possible usage in photonic devices and wavelength guides. Using SCAPS-1D, we simulate four straight heterojunction topologies, including various electron transport layers (ETLs), ZnO, WS, WO, and PCBM, Pt as the rear contact as well as CBTS as the hole transport layer, thereby exploring its device-level efficiency. Under AM 1.5G enlightenment the FTO/ZnO/RbNaInI/CBTS/Pt arrangement obtained the best leads to between these with an open-circuit voltage ( ) of 1.39 V, short-circuit current density ( ) at 21.39 mA cm, fill factor (FF) of 89.83%, particularly a staggering power conversion efficiency (PCE) of 26.84%. When combined with ideal ETLs, RbNaInI expresses a lucky, lead-free perovskite-absorbing material that opens routes for developing stable, effective, and ecologically conscious solar panels made of perovskite. This work highlights the need to accelerate development and enhance new solar components by merging first-principles modelling with device training exercises.
由铅制成的传统化合物的有害影响和长期不可预测性,促使人们更加迫切地寻求实用、稳定且生态可接受的无铅钙钛矿组件。在众多令人兴奋的前景中,钙钛矿对RbNaInI因其特殊的结构、电学和光学性质而脱颖而出,因此为光伏能源和光电子应用提供了一种可能的下一代光吸收物质。在这项工作中,我们使用混合计算方法对RbNaInI进行了全面研究。使用WIEN2k进行的密度泛函理论(DFT)计算验证了其立方结构,最佳晶格常数为12.25 Å,确保了强大的结构完整性。而其态密度(DOS)评估显示In-5s和I-5p轨道之间存在大量杂化,促进了电荷传输,半导体能带结构提供了0.68 eV的次带隙。在可见光光谱范围内有强烈吸收,具有显著的吸收系数和低反射率(<30%),使得光学分析非常适合太阳能发电厂和光电器件应用。此外,其介电材料功能以及折射率表明在光子器件和波长导方面有很大的应用潜力。使用SCAPS-1D,我们模拟了四种直接异质结拓扑结构,包括各种电子传输层(ETL),ZnO、WS、WO和PCBM,Pt作为背接触以及CBTS作为空穴传输层,从而探索其器件级效率。在AM 1.5G光照下,FTO/ZnO/RbNaInI/CBTS/Pt结构在这些结构中获得了最佳结果,开路电压( )为1.39 V,短路电流密度( )为21.39 mA cm,填充因子(FF)为89.83%,特别是惊人的功率转换效率(PCE)为26.84%。当与理想的ETL结合时,RbNaInI表现出一种幸运的无铅钙钛矿吸收材料,为开发由钙钛矿制成的稳定、高效且具有生态意识的太阳能电池板开辟了道路。这项工作强调了通过将第一性原理建模与器件训练相结合来加速开发和改进新型太阳能组件的必要性。