National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China; Medical Ultrasound Image Computing (MUSIC) Laboratory, Shenzhen University, Shenzhen, China.
Department of Ultrasound, Luohu People's Hospital, Shenzhen, China.
Med Image Anal. 2021 Aug;72:102119. doi: 10.1016/j.media.2021.102119. Epub 2021 May 31.
3D ultrasound (US) has become prevalent due to its rich spatial and diagnostic information not contained in 2D US. Moreover, 3D US can contain multiple standard planes (SPs) in one shot. Thus, automatically localizing SPs in 3D US has the potential to improve user-independence and scanning-efficiency. However, manual SP localization in 3D US is challenging because of the low image quality, huge search space and large anatomical variability. In this work, we propose a novel multi-agent reinforcement learning (MARL) framework to simultaneously localize multiple SPs in 3D US. Our contribution is four-fold. First, our proposed method is general and it can accurately localize multiple SPs in different challenging US datasets. Second, we equip the MARL system with a recurrent neural network (RNN) based collaborative module, which can strengthen the communication among agents and learn the spatial relationship among planes effectively. Third, we explore to adopt the neural architecture search (NAS) to automatically design the network architecture of both the agents and the collaborative module. Last, we believe we are the first to realize automatic SP localization in pelvic US volumes, and note that our approach can handle both normal and abnormal uterus cases. Extensively validated on two challenging datasets of the uterus and fetal brain, our proposed method achieves the average localization accuracy of 7.03/1.59mm and 9.75/1.19mm. Experimental results show that our light-weight MARL model has higher accuracy than state-of-the-art methods.
3D 超声(US)因其包含 2D US 中所没有的丰富空间和诊断信息而变得流行。此外,3D US 可以在一次拍摄中包含多个标准平面(SP)。因此,自动定位 3D US 中的 SP 有可能提高用户独立性和扫描效率。然而,由于图像质量低、搜索空间大以及解剖结构变化大,手动定位 3D US 中的 SP 具有挑战性。在这项工作中,我们提出了一种新的多智能体强化学习(MARL)框架,用于同时定位 3D US 中的多个 SP。我们的贡献有四点。首先,我们提出的方法具有通用性,可以准确地定位不同具有挑战性的 US 数据集的多个 SP。其次,我们为 MARL 系统配备了基于循环神经网络(RNN)的协作模块,该模块可以加强代理之间的通信并有效地学习平面之间的空间关系。第三,我们探索采用神经结构搜索(NAS)自动设计代理和协作模块的网络结构。最后,我们相信我们是第一个实现骨盆 US 容积中自动 SP 定位的人,并注意到我们的方法可以处理正常和异常子宫的情况。在子宫和胎儿大脑的两个具有挑战性的数据集上进行了广泛验证,我们提出的方法的平均定位精度分别为 7.03/1.59mm 和 9.75/1.19mm。实验结果表明,我们的轻量级 MARL 模型比最先进的方法具有更高的准确性。