Suppr超能文献

医学超声成像强化学习综述

Comprehensive review of reinforcement learning for medical ultrasound imaging.

作者信息

Elmekki Hanae, Islam Saidul, Alagha Ahmed, Sami Hani, Spilkin Amanda, Zakeri Ehsan, Zanuttini Antonela Mariel, Bentahar Jamal, Kadem Lyes, Xie Wen-Fang, Pibarot Philippe, Mizouni Rabeb, Otrok Hadi, Singh Shakti, Mourad Azzam

机构信息

Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada.

Department of Software and IT engineering, Ecole de Technologie Superieure (ETS), Montreal, Canada.

出版信息

Artif Intell Rev. 2025;58(9):284. doi: 10.1007/s10462-025-11268-w. Epub 2025 Jun 23.

Abstract

Medical Ultrasound (US) imaging has seen increasing demands over the past years, becoming one of the most preferred imaging modalities in clinical practice due to its affordability, portability, and real-time capabilities. However, it faces several challenges that limit its applicability, such as operator dependency, variability in interpretation, and limited resolution, which are amplified by the low availability of trained experts. This calls for the need of autonomous systems that are capable of reducing the dependency on humans for increased efficiency and throughput. Reinforcement Learning (RL) comes as a rapidly advancing field under Artificial Intelligence (AI) that allows the development of autonomous and intelligent agents through rewarded interactions with their environments. Several existing surveys on advancements in US imaging predominantly focus on partially autonomous AI solutions. However, none of these surveys explore the intersection between the stages of the US process and the recent advancements in RL solutions. To bridge this gap, this survey proposes a comprehensive taxonomy that integrates the stages of the US process with the RL development pipeline -including data preparation, problem formulation, simulation environment, RL training, validation and finetuning- and reviews current research efforts under this taxonomy. This work aims to highlight the potential of RL in building autonomous US solutions while identifying limitations and opportunities for further advancements in this field.

摘要

在过去几年中,医学超声(US)成像的需求不断增加,由于其价格实惠、便于携带和具备实时功能,已成为临床实践中最受欢迎的成像方式之一。然而,它面临着一些限制其适用性的挑战,如对操作者的依赖、解读的可变性以及分辨率有限,而训练有素的专家数量不足又加剧了这些问题。这就需要能够减少对人工依赖以提高效率和通量的自主系统。强化学习(RL)作为人工智能(AI)领域中一个快速发展的领域,通过与环境的奖励交互来开发自主智能体。现有的几项关于超声成像进展的综述主要关注部分自主的人工智能解决方案。然而,这些综述都没有探讨超声流程各阶段与强化学习解决方案最新进展之间的交叉点。为了弥补这一差距,本综述提出了一种全面的分类法,将超声流程的各阶段与强化学习开发流程(包括数据准备、问题表述、模拟环境、强化学习训练、验证和微调)整合在一起,并在此分类法下回顾当前的研究工作。这项工作旨在突出强化学习在构建自主超声解决方案方面的潜力,同时确定该领域进一步发展的局限性和机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0c9/12185671/98814138e00b/10462_2025_11268_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验