Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, China.
School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.
Nat Commun. 2021 Jun 18;12(1):3738. doi: 10.1038/s41467-021-24116-6.
Keratitis is the main cause of corneal blindness worldwide. Most vision loss caused by keratitis can be avoidable via early detection and treatment. The diagnosis of keratitis often requires skilled ophthalmologists. However, the world is short of ophthalmologists, especially in resource-limited settings, making the early diagnosis of keratitis challenging. Here, we develop a deep learning system for the automated classification of keratitis, other cornea abnormalities, and normal cornea based on 6,567 slit-lamp images. Our system exhibits remarkable performance in cornea images captured by the different types of digital slit lamp cameras and a smartphone with the super macro mode (all AUCs>0.96). The comparable sensitivity and specificity in keratitis detection are observed between the system and experienced cornea specialists. Our system has the potential to be applied to both digital slit lamp cameras and smartphones to promote the early diagnosis and treatment of keratitis, preventing the corneal blindness caused by keratitis.
角膜炎是全球范围内导致角膜盲的主要原因。通过早期发现和治疗,大多数由角膜炎导致的视力丧失是可以避免的。角膜炎的诊断通常需要有经验的眼科医生。然而,全球范围内都缺乏眼科医生,尤其是在资源有限的环境中,这使得角膜炎的早期诊断具有挑战性。在这里,我们开发了一种基于 6567 张裂隙灯图像的深度学习系统,用于自动分类角膜炎、其他角膜异常和正常角膜。我们的系统在不同类型的数字裂隙灯相机和具有超级微距模式的智能手机拍摄的角膜图像上均表现出出色的性能(所有 AUC 值均大于 0.96)。在角膜炎检测方面,系统与有经验的角膜专家具有可比的灵敏度和特异性。我们的系统有可能应用于数字裂隙灯相机和智能手机,以促进角膜炎的早期诊断和治疗,防止角膜炎导致的角膜盲。