Suppr超能文献

利用深度学习对裂隙灯和智能手机拍摄的感染性角膜炎进行可行性评估。

Feasibility assessment of infectious keratitis depicted on slit-lamp and smartphone photographs using deep learning.

作者信息

Wang Lei, Chen Kuan, Wen Han, Zheng Qinxiang, Chen Yang, Pu Jiantao, Chen Wei

机构信息

School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 211189, China.

School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.

出版信息

Int J Med Inform. 2021 Nov;155:104583. doi: 10.1016/j.ijmedinf.2021.104583. Epub 2021 Sep 17.

Abstract

BACKGROUND

This study aims to investigate how infectious keratitis depicted on slit-lamp and smartphone photographs can be reliably assessed using deep learning.

MATERIALS AND METHODS

We retrospectively collected a dataset consisting of 5,673 slit-lamp photographs and 400 smartphone photographs acquired on different subjects. Based on multiple clinical tests (e.g., cornea scraping), these photographs were diagnosed and classified into four categories, including normal (i.e., no keratitis), bacterial keratitis (BK), fungal keratitis (FK), and herpes simplex virus stromal keratitis (HSK). We preprocessed these slit-lamp images into two separate subgroups: (1) global images and (2) regional images. The cases in each group were randomly split into training, internal validation, and independent testing sets. Then, we implemented a deep learning network based on the InceptionV3 by fine-tuning its architecture and used the developed network to classify these slit-lamp images. Additionally, we investigated the performance of the InceptionV3 model in classifying infectious keratitis depicted on smartphone images. We, in particular, clarified whether the computer model trained on the global images outperformed the one trained on the regional images. The quadratic weighted kappa (QWK) and the receiver operating characteristic (ROC) analysis were used to assess the performance of the developed models.

RESULTS

Our experiments on the independent testing sets showed that the developed models achieved the QWK of 0.9130 (95% CI: 88.99-93.61%) and 0.8872 (95% CI: 86.13-91.31%), and 0.5379 (95% CI, 48.89-58.69%) for the global images, the regional images, and the smartphone images, respectively. The area under the ROC curves (AUCs) were 0.9588 (95% CI: 94.28-97.48%), 0.9425 (95% CI: 92.35-96.15%), and 0.8529 (95% CI: 81.79-88.79%) for the same test sets, respectively.

CONCLUSION

The deep learning solution demonstrated very promising performance in assessing infectious keratitis depicted on slit-lamp photographs and the images acquired by smartphones. In particular, the model trained on the global images outperformed that trained on the regional images.

摘要

背景

本研究旨在探讨如何使用深度学习对裂隙灯和智能手机拍摄的感染性角膜炎照片进行可靠评估。

材料与方法

我们回顾性收集了一个数据集,其中包括在不同受试者身上获取的5673张裂隙灯照片和400张智能手机照片。基于多项临床检查(如角膜刮片),这些照片被诊断并分为四类,包括正常(即无角膜炎)、细菌性角膜炎(BK)、真菌性角膜炎(FK)和单纯疱疹病毒性基质性角膜炎(HSK)。我们将这些裂隙灯图像预处理为两个单独的子组:(1)全局图像和(2)局部图像。每组病例被随机分为训练集、内部验证集和独立测试集。然后,我们通过微调其架构实现了基于InceptionV3的深度学习网络,并使用开发的网络对这些裂隙灯图像进行分类。此外,我们研究了InceptionV3模型对智能手机图像中感染性角膜炎进行分类的性能。我们特别阐明了在全局图像上训练的计算机模型是否优于在局部图像上训练的模型。使用二次加权kappa(QWK)和受试者工作特征(ROC)分析来评估开发模型的性能。

结果

我们在独立测试集上的实验表明,开发的模型在全局图像、局部图像和智能手机图像上的QWK分别为0.9130(95%CI:88.99 - 93.61%)、0.8872(95%CI:86.13 - 91.31%)和0.5379(95%CI,48.89 - 58.69%)。相同测试集的ROC曲线下面积(AUC)分别为0.9588(95%CI:94.28 - 97.48%)、0.9425(95%CI:92.35 - 96.15%)和0.8529(95%CI:81.79 - 88.79%)。

结论

深度学习解决方案在评估裂隙灯照片和智能手机拍摄的图像中显示出非常有前景的感染性角膜炎评估性能。特别是,在全局图像上训练的模型优于在局部图像上训练的模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验