Suppr超能文献

受豆荚启发的 3D 打印相变型微晶格用于太阳能热能收集和存储。

Bean-Pod-Inspired 3D-Printed Phase Change Microlattices for Solar-Thermal Energy Harvesting and Storage.

机构信息

Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China.

Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.

出版信息

Small. 2021 Jul;17(30):e2101093. doi: 10.1002/smll.202101093. Epub 2021 Jun 19.

Abstract

Effective and reliable encapsulation of phase change materials (PCMs) is essential and critical to the high-performance solar-thermal energy harvesting and storage. However, challenges remain pertaining to manufacturing scalability, high efficiency in energy storage/release, and anti-leakage of melted PCMs. Herein, inspired by natural legume, a facile and scalable extrusion-based core-sheath 3D printing strategy is demonstrated for directly constructing bean-pod-structured octadecane (OD)/graphene (BOG) phase change microlattices, with regular porous configuration as well as individual and effective encapsulation of OD "beans" into highly interconnected graphene network wrapping layer built by closely stacked and aligned graphene sheets. The unique architectural features enable the ready spreading of light into the interior of phase change microlattice, a high transversal thermal conductivity of 1.67 W m K , and rapid solar-thermal energy harvesting and transfer, thereby delivering a high solar-thermal energy storage efficiency, and a large phase change enthalpy of 190 J g with 99.1% retention after 200 cycles. Most importantly, such encapsulated PCMs feature an exceptional thermal reliability and stability, with no leakage and shape variation even at 1000 thermal cycles and partial damage of BOG. This work validates the feasibility of scalably printing practical encapsulated PCMs, which may revolutionize the fabrication of composite PCMs for solar-thermal energy storage devices.

摘要

有效且可靠地封装相变材料(PCM)对于高性能太阳能热能量收集和存储至关重要。然而,在制造可扩展性、储能/释能效率以及防止融化的 PCM 泄漏方面仍然存在挑战。在此,受天然豆类启发,本文展示了一种简单且可扩展的基于挤出的芯鞘 3D 打印策略,用于直接构建豆荚结构的十八烷(OD)/石墨烯(BOG)相变微晶格,具有规则的多孔结构以及将 OD“豆子”有效封装到高度互联的石墨烯网络包裹层中,该包裹层由紧密堆叠和对齐的石墨烯片构建。独特的结构特征使得光线能够轻易地进入相变微晶格内部,实现了高横向热导率 1.67 W m K 和快速的太阳能热能量收集和传递,从而提供了高太阳能热储能效率和 190 J g 的大相变焓,经过 200 次循环后仍保持 99.1%的保留率。最重要的是,这种封装的 PCM 具有出色的热可靠性和稳定性,即使经过 1000 次热循环和部分 BOG 损坏,也没有泄漏和形状变化。这项工作验证了实用封装 PCM 的可扩展性打印的可行性,这可能会彻底改变用于太阳能热储能装置的复合 PCM 的制造。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验