Suppr超能文献

用于全光谱太阳能收集与存储的硫化铜纳米盘掺杂固-固相变材料

Copper Sulfide Nanodisk-Doped Solid-Solid Phase Change Materials for Full Spectrum Solar-Thermal Energy Harvesting and Storage.

作者信息

Xiong Feng, Yuan Kunjie, Aftab Waseem, Jiang Haoyang, Shi Jinming, Liang Zibin, Gao Song, Zhong Ruiqin, Wang Hsinglin, Zou Ruqiang

机构信息

Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China.

School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.

出版信息

ACS Appl Mater Interfaces. 2021 Jan 13;13(1):1377-1385. doi: 10.1021/acsami.0c16891. Epub 2020 Dec 22.

Abstract

Phase change materials (PCMs) provide a state-of-the-art thermal energy storage capability and offer enormous potential for solar energy storage systems. However, the widespread adaptation of PCMs in advanced energy systems is often limited by low energy harvesting efficiency and poor shape stability. Thus, developing shape-stable PCMs for high-efficiency solar-thermal energy storage has remained an impediment to further advancement. Herein, we devised novel shape-stable composite PCMs based on monodispersed CuS disk-like nanoparticles and solid-solid PCM polyurethane (PU). In our devised composite system, the incorporated CuS nanoparticles act as a photonic nanoheater and the PU matrix acts as the heat reservoir which can store thermal energy via the latent heat while the phase transition occurs. The fabricated CuS@PU composite with 4 wt % doping of CuS nanodisks exhibits a phase change enthalpy of around 120 J/g, which is only 14% lower than that of the neat PU PCM. Owing to the solid-state phase transition of the PU PCM, only 0.6% of energy storage loss occurred over 100 repeated heating and cooling cycles. Besides, the solar-thermal energy storage efficiency of the CuS@PU composite exceeds 92% at 1 sun illumination under the full solar spectrum. Based on these outstanding thermophysical properties such as excellent shape stability, thermal stability, and thermal reliability, the developed CuS@PU composite PCMs are imperative candidates for real-world applications.

摘要

相变材料(PCM)具备先进的热能存储能力,在太阳能存储系统中具有巨大潜力。然而,PCM在先进能源系统中的广泛应用常常受到能量收集效率低和形状稳定性差的限制。因此,开发用于高效太阳能-热能存储的形状稳定PCM一直是进一步发展的障碍。在此,我们基于单分散的CuS盘状纳米颗粒和固-固PCM聚氨酯(PU)设计了新型形状稳定复合PCM。在我们设计的复合体系中,掺入的CuS纳米颗粒充当光子纳米加热器,PU基体充当储热器,在发生相变时可通过潜热存储热能。掺杂4 wt% CuS纳米盘的CuS@PU复合材料的相变焓约为120 J/g,仅比纯PU PCM低14%。由于PU PCM的固态相变,在100次重复加热和冷却循环中仅发生0.6%的储能损失。此外,在全太阳光谱下1个太阳光照强度下,CuS@PU复合材料的太阳能-热能存储效率超过92%。基于这些优异的热物理性能,如出色的形状稳定性、热稳定性和热可靠性,所开发的CuS@PU复合PCM是实际应用的理想候选材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验