Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
Biomedical Research Center, Qatar University, Doha, Qatar.
Cancer Med. 2021 Aug;10(15):5019-5030. doi: 10.1002/cam4.4064. Epub 2021 Jun 19.
Glioblastoma multiforme (GBM) is one of the deadliest brain tumors with an unfavorable prognosis and overall survival of approximately 20 months following diagnosis. The current treatment for GBM includes surgical resections and chemo- and radiotherapeutic modalities, which are not effective. CAR-T immunotherapy has been proven effective for CD19-positive blood malignancies, and the application of CAR-T cell therapy for solid tumors including GBM offers great hope for this aggressive tumor which has a limited response to current treatments. CAR-T technology depends on the use of patient-specific T cells genetically engineered to express specific tumor-associated antigens (TAAs). Interaction of CAR-T cells with tumor cells triggers the destruction/elimination of these cells by the induction of cytotoxicity and the release of different cytokines. Despite the great promise of CAR-T cell-based therapy several challenges exist. These include the heterogeneity of GBM cancer cells, aberrant various signaling pathways involved in tumor progression, antigen escape, the hostile inhibitory GBM microenvironment, T cell dysfunction, blood-brain barrier, and defective antigen presentation. All need to be addressed before full application at the clinical level can begin. Herein we provide a focused review of the rationale for the use of different types of CAR-T cells (including FcγRs), the different GBM-associated antigens, the challenges still facing CAR-T-based therapy, and means to overcome such challenges. Finally, we enumerate currently completed and ongoing clinical trials, highlighting the different ways such trials are designed to overcome specific problems. Exploitation of the full potential of CAR-T cell therapy for GBM depends on their solution.
多形性胶质母细胞瘤(GBM)是最致命的脑肿瘤之一,预后不良,确诊后总体生存率约为 20 个月。目前 GBM 的治疗方法包括手术切除以及化疗和放疗,但效果并不理想。嵌合抗原受体 T 细胞(CAR-T)免疫疗法已被证明对 CD19 阳性血液恶性肿瘤有效,CAR-T 细胞疗法在包括 GBM 在内的实体肿瘤中的应用为这种对现有治疗方法反应有限的侵袭性肿瘤带来了很大的希望。CAR-T 技术依赖于使用经过基因工程改造的患者特异性 T 细胞,使其表达特定的肿瘤相关抗原(TAA)。CAR-T 细胞与肿瘤细胞的相互作用通过诱导细胞毒性和释放不同的细胞因子来触发这些细胞的破坏/消除。尽管 CAR-T 细胞疗法具有巨大的应用前景,但仍存在一些挑战。这些挑战包括 GBM 癌细胞的异质性、肿瘤进展涉及的异常各种信号通路、抗原逃逸、抑制性 GBM 微环境、T 细胞功能障碍、血脑屏障和抗原呈递缺陷。在临床应用之前,所有这些都需要得到解决。本文重点综述了使用不同类型的 CAR-T 细胞(包括 FcγRs)的原理、不同的 GBM 相关抗原、CAR-T 治疗仍然面临的挑战以及克服这些挑战的方法。最后,我们列举了目前已完成和正在进行的临床试验,突出了这些试验设计克服特定问题的不同方式。充分发挥 CAR-T 细胞疗法在 GBM 中的潜力取决于这些挑战的解决。
J Chin Med Assoc. 2020-5
Neurosurgery. 2021-5-13
Cancer Lett. 2017-9-10
Theranostics. 2025-6-12
Oncol Lett. 2024-7-17
Int J Mol Sci. 2024-2-21
Sensors (Basel). 2023-12-15
Front Pharmacol. 2023-9-28
Bioeng Transl Med. 2023-2-14
Curr Oncol Rep. 2021-1-26
Sci Transl Med. 2020-3-4
Med Hypotheses. 2020-4
Clin Cancer Res. 2019-9-10