School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland.
Institute of Biochemistry, Molecular Biology, and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka.
Sensors (Basel). 2023 Dec 15;23(24):9842. doi: 10.3390/s23249842.
Gliomas, a prevalent category of primary malignant brain tumors, pose formidable clinical challenges due to their invasive nature and limited treatment options. The current therapeutic landscape for gliomas is constrained by a "one-size-fits-all" paradigm, significantly restricting treatment efficacy. Despite the implementation of multimodal therapeutic strategies, survival rates remain disheartening. The conventional treatment approach, involving surgical resection, radiation, and chemotherapy, grapples with substantial limitations, particularly in addressing the invasive nature of gliomas. Conventional diagnostic tools, including computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), play pivotal roles in outlining tumor characteristics. However, they face limitations, such as poor biological specificity and challenges in distinguishing active tumor regions. The ongoing development of diagnostic tools and therapeutic approaches represents a multifaceted and promising frontier in the battle against this challenging brain tumor. The aim of this comprehensive review is to address recent advances in diagnostic tools and therapeutic approaches for gliomas. These innovations aim to minimize invasiveness while enabling the precise, multimodal targeting of localized gliomas. Researchers are actively developing new diagnostic tools, such as colorimetric techniques, electrochemical biosensors, optical coherence tomography, reflectometric interference spectroscopy, surface-enhanced Raman spectroscopy, and optical biosensors. These tools aim to regulate tumor progression and develop precise treatment methods for gliomas. Recent technological advancements, coupled with bioelectronic sensors, open avenues for new therapeutic modalities, minimizing invasiveness and enabling multimodal targeting with unprecedented precision. The next generation of multimodal therapeutic strategies holds potential for precision medicine, aiding the early detection and effective management of solid brain tumors. These innovations offer promise in adopting precision medicine methodologies, enabling early disease detection, and improving solid brain tumor management. This review comprehensively recognizes the critical role of pioneering therapeutic interventions, holding significant potential to revolutionize brain tumor therapeutics.
神经胶质瘤是原发性恶性脑肿瘤中较为常见的一种,由于其侵袭性和有限的治疗选择,给临床带来了巨大的挑战。目前,神经胶质瘤的治疗方法受到“一刀切”模式的限制,极大地限制了治疗效果。尽管采用了多模式治疗策略,但生存率仍然令人沮丧。传统的治疗方法包括手术切除、放疗和化疗,这些方法存在很大的局限性,特别是在解决神经胶质瘤的侵袭性方面。传统的诊断工具,包括计算机断层扫描(CT)、磁共振成像(MRI)和正电子发射断层扫描(PET),在勾勒肿瘤特征方面发挥着关键作用。然而,它们存在着一些局限性,如生物特异性差,难以区分活跃的肿瘤区域。正在开发的诊断工具和治疗方法代表了对抗这种挑战性脑肿瘤的一个多方面和有前途的前沿领域。本综述的目的是探讨神经胶质瘤的诊断工具和治疗方法的最新进展。这些创新旨在最大限度地减少侵袭性,同时实现对局部神经胶质瘤的精确、多模式靶向治疗。研究人员正在积极开发新的诊断工具,如比色技术、电化学生物传感器、光学相干断层扫描、反射干涉光谱学、表面增强拉曼光谱和光学生物传感器。这些工具旨在调节肿瘤进展,为神经胶质瘤开发精确的治疗方法。最近的技术进步,加上生物电子传感器,为新的治疗模式开辟了道路,最大限度地减少了侵袭性,并以前所未有的精度实现了多模式靶向治疗。下一代多模式治疗策略有可能为精准医学提供帮助,有助于早期发现和有效管理实体脑肿瘤。这些创新有望采用精准医学方法,实现早期疾病检测,并改善实体脑肿瘤的管理。本综述全面认识到开创性治疗干预的关键作用,这些干预有可能彻底改变脑肿瘤的治疗方法。