Suppr超能文献

快速 PG S:一种无需测试数据集即可计算汇总 GWAS 数据的快速多基因评分计算器。

RápidoPGS: a rapid polygenic score calculator for summary GWAS data without a test dataset.

机构信息

Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.

Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge CB2 2QQ, UK.

出版信息

Bioinformatics. 2021 Dec 7;37(23):4444-4450. doi: 10.1093/bioinformatics/btab456.

Abstract

MOTIVATION

Polygenic scores (PGS) aim to genetically predict complex traits at an individual level. PGS are typically trained on genome-wide association summary statistics and require an independent test dataset to tune parameters. More recent methods allow parameters to be tuned on the training data, removing the need for independent test data, but approaches are computationally intensive. Based on fine-mapping principles, we present RápidoPGS, a flexible and fast method to compute PGS requiring summary-level Genome-wide association studies (GWAS) datasets only, with little computational requirements and no test data required for parameter tuning.

RESULTS

We show that RápidoPGS performs slightly less well than two out of three other widely used PGS methods (LDpred2, PRScs and SBayesR) for case-control datasets, with median r2 difference: -0.0092, -0.0042 and 0.0064, respectively, but up to 17 000-fold faster with reduced computational requirements. RápidoPGS is implemented in R and can work with user-supplied summary statistics or download them from the GWAS catalog.

AVAILABILITY AND IMPLEMENTATION

Our method is available with a GPL license as an R package from CRAN and GitHub.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

多基因评分(PGS)旨在在个体水平上进行复杂性状的遗传预测。PGS 通常是基于全基因组关联汇总统计数据进行训练的,需要独立的测试数据集来调整参数。最近的方法允许在训练数据上调整参数,从而无需独立的测试数据,但这些方法的计算量较大。基于精细映射原理,我们提出了 RápidoPGS,这是一种灵活且快速的方法,仅需要汇总水平的全基因组关联研究(GWAS)数据集即可计算 PGS,计算要求低,且无需调整参数的测试数据。

结果

我们表明,RápidoPGS 在病例对照数据集上的表现略逊于三种常用的 PGS 方法(LDpred2、PRScs 和 SBayesR)中的两种,中位 r2 差异分别为-0.0092、-0.0042 和 0.0064,但速度快 17000 倍,计算要求也降低了。RápidoPGS 是用 R 语言实现的,可以使用用户提供的汇总统计数据,也可以从 GWAS 目录中下载。

可用性和实现

我们的方法是一个 GPL 许可证下的 R 包,可从 CRAN 和 GitHub 获得。

补充信息

补充数据可在“Bioinformatics”在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a95/8652106/229234d99ca5/btab456f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验