Wu Ming-Yue, Carbo-Tano Martin, Mirat Olivier, Lejeune Francois-Xavier, Roussel Julian, Quan Feng B, Fidelin Kevin, Wyart Claire
Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
Curr Biol. 2021 Aug 9;31(15):3315-3329.e5. doi: 10.1016/j.cub.2021.05.042. Epub 2021 Jun 18.
In the spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic interoceptive sensory neurons that detect spinal curvature via a functional coupling with the Reissner fiber. This mechanosensory system has recently been found to be involved in spine morphogenesis and postural control but the underlying mechanisms are not fully understood. In zebrafish, CSF-cNs project an ascending and ipsilateral axon reaching two to six segments away. Rostralmost CSF-cNs send their axons ipsilaterally into the hindbrain, a brain region containing motor nuclei and reticulospinal neurons (RSNs), which send descending motor commands to spinal circuits. Until now, the synaptic connectivity of CSF-cNs has only been investigated in the spinal cord, where they synapse onto motor neurons and premotor excitatory interneurons. The identity of CSF-cN targets in the hindbrain and the behavioral relevance of these sensory projections from the spinal cord to the hindbrain are unknown. Here, we provide anatomical and molecular evidence that rostralmost CSF-cNs synapse onto the axons of large RSNs including Mauthner cells and V2a neurons. Functional anatomy and optogenetically assisted mapping reveal that rostral CSF-cNs also synapse onto the soma and dendrites of cranial motor neurons innervating hypobranchial muscles. During acousto-vestibular evoked escape responses, ablation of rostralmost CSF-cNs results in a weaker escape response with a decreased C-bend amplitude, lower speed, and deficient postural control. Our study demonstrates that spinal sensory feedback enhances speed and stabilizes posture, and reveals a novel spinal gating mechanism acting on the output of descending commands sent from the hindbrain to the spinal cord.
在脊髓中,脑脊液接触神经元(CSF-cNs)是γ-氨基丁酸能的内感受性感觉神经元,它们通过与赖氏纤维的功能耦合来检测脊柱弯曲。最近发现这个机械感觉系统参与脊柱形态发生和姿势控制,但其潜在机制尚未完全了解。在斑马鱼中,CSF-cNs投射出一条上升的同侧轴突,延伸到两到六个节段之外。最前端的CSF-cNs将其轴突同侧发送到后脑,后脑是一个包含运动核和网状脊髓神经元(RSNs)的脑区,这些神经元向脊髓回路发送下行运动指令。到目前为止,CSF-cNs的突触连接仅在脊髓中进行了研究,它们在脊髓中与运动神经元和运动前兴奋性中间神经元形成突触。CSF-cNs在后脑的靶点身份以及这些从脊髓到后脑的感觉投射的行为相关性尚不清楚。在这里,我们提供了解剖学和分子证据,表明最前端的CSF-cNs与包括莫特纳尔细胞和V2a神经元在内的大型RSNs的轴突形成突触。功能解剖学和光遗传学辅助图谱显示,前端CSF-cNs也与支配鳃下肌肉的颅运动神经元的胞体和树突形成突触。在声-前庭诱发的逃避反应中,消融最前端的CSF-cNs会导致逃避反应减弱,C形弯曲幅度减小、速度降低以及姿势控制不足。我们的研究表明,脊髓感觉反馈可提高速度并稳定姿势,并揭示了一种新的脊髓门控机制,作用于从后脑发送到脊髓的下行指令的输出。