Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
J Biol Chem. 2021 Jul;297(1):100884. doi: 10.1016/j.jbc.2021.100884. Epub 2021 Jun 17.
The mechanistic target of rapamycin (mTOR) is often referred to as a master regulator of the cellular metabolism that can integrate the growth factor and nutrient signaling. Fasting suppresses hepatic mTORC1 activity via the activity of the tuberous sclerosis complex (TSC), a negative regulator of mTORC1, to suppress anabolic metabolism. The loss of TSC1 in the liver locks the liver in a constitutively anabolic state even during fasting, which was suggested to regulate peroxisome proliferator-activated receptor alpha (PPARα) signaling and ketogenesis, but the molecular determinants of this regulation are unknown. Here, we examined if the activation of the mTORC1 complex in mice by the liver-specific deletion of TSC1 (TSC1) is sufficient to suppress PPARα signaling and therefore ketogenesis in the fasted state. We found that the activation of mTORC1 in the fasted state is not sufficient to repress PPARα-responsive genes or ketogenesis. Furthermore, we examined whether the activation of the anabolic program mediated by mTORC1 complex activation in the fasted state could suppress the robust catabolic programming and enhanced PPARα transcriptional response of mice with a liver-specific defect in mitochondrial long-chain fatty acid oxidation using carnitine palmitoyltransferase 2 (Cpt2) mice. We generated Cpt2; Tsc1 double-KO mice and showed that the activation of mTORC1 by deletion of TSC1 could not suppress the catabolic PPARα-mediated phenotype of Cpt2 mice. These data demonstrate that the activation of mTORC1 by the deletion of TSC1 is not sufficient to suppress a PPARα transcriptional program or ketogenesis after fasting.
雷帕霉素的作用靶点(mTOR)通常被称为细胞代谢的主要调节剂,它可以整合生长因子和营养信号。禁食通过结节性硬化复合物(TSC)抑制肝 mTORC1 活性,TSC 是 mTORC1 的负调节剂,从而抑制合成代谢。肝脏中 TSC1 的缺失使肝脏即使在禁食期间也处于持续合成代谢状态,这被认为可以调节过氧化物酶体增殖物激活受体α(PPARα)信号和酮体生成,但这种调节的分子决定因素尚不清楚。在这里,我们研究了通过肝脏特异性敲除 TSC1(TSC1)使小鼠中的 mTORC1 复合物激活是否足以抑制禁食状态下的 PPARα 信号和因此的酮体生成。我们发现,在禁食状态下,mTORC1 的激活不足以抑制 PPARα 反应性基因或酮体生成。此外,我们还研究了在禁食状态下,mTORC1 复合物激活介导的合成代谢程序的激活是否可以抑制具有肝脏特异性线粒体长链脂肪酸氧化缺陷的小鼠中的强大分解代谢编程和增强的 PPARα 转录反应,使用肉毒碱棕榈酰转移酶 2(Cpt2)小鼠。我们生成了 Cpt2; Tsc1 双 KO 小鼠,并表明 TSC1 缺失导致的 mTORC1 激活不能抑制 Cpt2 小鼠的分解代谢 PPARα 介导的表型。这些数据表明,通过 TSC1 缺失激活 mTORC1 不足以抑制禁食后 PPARα 转录程序或酮体生成。