Suppr超能文献

基于能量的声带流体-结构模型。

Energy-based fluid-structure model of the vocal folds.

作者信息

Mora Luis A, Ramirez Hector, Yuz Juan I, Le Gorec Yann, Zañartu Matías

机构信息

Department of Electronic Engineering, Universidad Técnica Federico Santa María, 2390123 Valparaiso, Chile.

Département AS2M, FEMTO-ST/ENSMM, Université de Bourgogne Franche-Comté, 25000 Besançon, France.

出版信息

IMA J Math Control Inf. 2020 Dec 8;38(2):466-492. doi: 10.1093/imamci/dnaa031. eCollection 2021 Jun.

Abstract

Lumped elements models of vocal folds are relevant research tools that can enhance the understanding of the pathophysiology of many voice disorders. In this paper, we use the port-Hamiltonian framework to obtain an energy-based model for the fluid-structure interactions between the vocal folds and the airflow in the glottis. The vocal fold behavior is represented by a three-mass model and the airflow is described as a fluid with irrotational flow. The proposed approach allows to go beyond the usual quasi-steady one-dimensional flow assumption in lumped mass models. The simulation results show that the proposed energy-based model successfully reproduces the oscillations of the vocal folds, including the collision phenomena, and it is useful to analyze the energy exchange between the airflow and the vocal folds.

摘要

声带的集总元件模型是相关的研究工具,可增强对许多嗓音障碍病理生理学的理解。在本文中,我们使用端口哈密顿框架来获得一个基于能量的模型,用于描述声带与声门气流之间的流固相互作用。声带行为由一个三质量模型表示,气流被描述为具有无旋流动的流体。所提出的方法允许超越集总质量模型中通常的准稳态一维流动假设。仿真结果表明,所提出的基于能量的模型成功地再现了声带的振动,包括碰撞现象,并且对于分析气流与声带之间的能量交换是有用的。

相似文献

1
Energy-based fluid-structure model of the vocal folds.
IMA J Math Control Inf. 2020 Dec 8;38(2):466-492. doi: 10.1093/imamci/dnaa031. eCollection 2021 Jun.
2
A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
Ann Biomed Eng. 2009 Mar;37(3):625-42. doi: 10.1007/s10439-008-9630-9. Epub 2009 Jan 14.
3
Fully-coupled aeroelastic simulation with fluid compressibility - For application to vocal fold vibration.
Comput Methods Appl Mech Eng. 2017 Mar 1;315:584-606. doi: 10.1016/j.cma.2016.11.010. Epub 2016 Oct 17.
6
Two-mass model of the vocal folds: negative differential resistance oscillation.
J Acoust Soc Am. 1988 Jun;83(6):2453-8. doi: 10.1121/1.396326.
7
Comparison of electroglottographic variability index in euphonic and pathological voice.
Acta Otorhinolaryngol Ital. 2019 Dec;39(6):381-388. doi: 10.14639/0392-100X-2127. Epub 2019 Jan 31.
8
Modeling the Pathophysiology of Phonotraumatic Vocal Hyperfunction With a Triangular Glottal Model of the Vocal Folds.
J Speech Lang Hear Res. 2017 Sep 18;60(9):2452-2471. doi: 10.1044/2017_JSLHR-S-16-0412.
9
Influence of the ventricular folds on a voice source with specified vocal fold motion.
J Acoust Soc Am. 2010 Mar;127(3):1519-27. doi: 10.1121/1.3299200.
10
ON THE SINGLE-MASS MODEL OF THE VOCAL FOLDS.
Fluid Dyn Res. 2010 Jan 18;42(1):15001. doi: 10.1088/0169-5983/42/1/015001.

本文引用的文献

1
A Deep Neural Network Based Glottal Flow Model for Predicting Fluid-Structure Interactions during Voice Production.
Appl Sci (Basel). 2020 Jan 2;10(2). doi: 10.3390/app10020705. Epub 2020 Jan 19.
2
Modeling the Pathophysiology of Phonotraumatic Vocal Hyperfunction With a Triangular Glottal Model of the Vocal Folds.
J Speech Lang Hear Res. 2017 Sep 18;60(9):2452-2471. doi: 10.1044/2017_JSLHR-S-16-0412.
3
Glottal Aerodynamic Measures in Women With Phonotraumatic and Nonphonotraumatic Vocal Hyperfunction.
J Speech Lang Hear Res. 2017 Aug 16;60(8):2159-2169. doi: 10.1044/2017_JSLHR-S-16-0337.
4
Computational Modeling of Fluid-Structure-Acoustics Interaction during Voice Production.
Front Bioeng Biotechnol. 2017 Feb 13;5:7. doi: 10.3389/fbioe.2017.00007. eCollection 2017.
5
Comparison of Vocal Vibration-Dose Measures for Potential-Damage Risk Criteria.
J Speech Lang Hear Res. 2015 Oct;58(5):1425-39. doi: 10.1044/2015_JSLHR-S-13-0128.
6
Smoothness of an equation for the glottal flow rate versus the glottal area.
J Acoust Soc Am. 2015 May;137(5):2970-3. doi: 10.1121/1.4919297.
8
Influence of numerical model decisions on the flow-induced vibration of a computational vocal fold model.
Comput Struct. 2013 Jun 1;122:44-54. doi: 10.1016/j.compstruc.2012.10.015.
9
Relation of perceived breathiness to laryngeal kinematics and acoustic measures based on computational modeling.
J Speech Lang Hear Res. 2013 Aug;56(4):1209-23. doi: 10.1044/1092-4388(2012/12-0194). Epub 2013 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验