Suppr超能文献

三维喉模型中声门射流和声带动力学的直接数值模拟。

Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model.

机构信息

Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 North Charles Street, Baltimore, Maryland 21218, USA.

出版信息

J Acoust Soc Am. 2011 Jul;130(1):404-15. doi: 10.1121/1.3592216.

Abstract

An immersed-boundary method based flow solver coupled with a finite-element solid dynamics solver is employed in order to conduct direct-numerical simulations of phonatory dynamics in a three-dimensional model of the human larynx. The computed features of the glottal flow including mean and peak flow rates, and the open and skewness quotients are found to be within the normal physiological range. The flow-induced vibration pattern shows the classical "convergent-divergent" glottal shape, and the vibration amplitude is also found to be typical for human phonation. The vocal fold motion is analyzed through the method of empirical eigenfunctions and this analysis indicates a 1:1 modal entrainment between the "adduction-abduction" mode and the "mucosal wave" mode. The glottal jet is found to exhibit noticeable cycle-to-cycle asymmetric deflections and the mechanism underlying this phenomenon is examined.

摘要

采用基于浸没边界的流求解器与有限元固体动力学求解器相结合的方法,对人类喉的三维模型中的发声动力学进行直接数值模拟。计算得到的声门射流特征,包括平均和峰值流速以及开口和偏斜度比,均处于正常生理范围之内。流引起的振动模式显示出典型的“收敛-发散”声门形状,并且振动幅度也典型适用于人类发声。通过经验特征函数的方法对声带运动进行分析,该分析表明“内收-外展”模式和“黏膜波”模式之间存在 1:1 的模态同步。发现声门射流存在明显的周期性非对称偏折,并且研究了这种现象的产生机制。

相似文献

2
Subject-specific computational modeling of human phonation.
J Acoust Soc Am. 2014 Mar;135(3):1445-56. doi: 10.1121/1.4864479.
5
A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
Ann Biomed Eng. 2009 Mar;37(3):625-42. doi: 10.1007/s10439-008-9630-9. Epub 2009 Jan 14.
6
Computational study of effects of tension imbalance on phonation in a three-dimensional tubular larynx model.
J Voice. 2014 Jul;28(4):411-9. doi: 10.1016/j.jvoice.2013.12.016. Epub 2014 Apr 13.
8
Intraglottal geometry and velocity measurements in canine larynges.
J Acoust Soc Am. 2014 Jan;135(1):380-8. doi: 10.1121/1.4837222.
9
The effects of the false vocal fold gaps on intralaryngeal pressure distributions and their effects on phonation.
Sci China C Life Sci. 2008 Nov;51(11):1045-51. doi: 10.1007/s11427-008-0128-3. Epub 2008 Nov 7.

引用本文的文献

2
Pressure Distributions in Glottal Geometries With Multichannel Airflows.
J Voice. 2024 Sep 16. doi: 10.1016/j.jvoice.2024.08.019.
4
The effect of swelling on vocal fold kinematics and dynamics.
Biomech Model Mechanobiol. 2023 Dec;22(6):1873-1889. doi: 10.1007/s10237-023-01740-3. Epub 2023 Jul 10.
5
The Influence of Fiber Orientation of the Conus Elasticus in Vocal Fold Modeling.
J Biomech Eng. 2023 Sep 1;145(9). doi: 10.1115/1.4062420.
6
Examining the influence of epithelium layer modeling approaches on vocal fold kinematics and kinetics.
Biomech Model Mechanobiol. 2023 Apr;22(2):479-493. doi: 10.1007/s10237-022-01658-2. Epub 2022 Dec 19.
7
Targeted delivery of inhalable drug particles in a patient-specific tracheobronchial tree with moderate COVID-19: A numerical study.
Powder Technol. 2022 Jun;405:117520. doi: 10.1016/j.powtec.2022.117520. Epub 2022 May 17.
8
Phase-averaged and cycle-to-cycle analysis of jet dynamics in a scaled up vocal-fold model.
J Fluid Mech. 2021 Jul 10;918. doi: 10.1017/jfm.2021.365. Epub 2021 May 17.
10
Energy-based fluid-structure model of the vocal folds.
IMA J Math Control Inf. 2020 Dec 8;38(2):466-492. doi: 10.1093/imamci/dnaa031. eCollection 2021 Jun.

本文引用的文献

1
A computational study of asymmetric glottal jet deflection during phonation.
J Acoust Soc Am. 2011 Apr;129(4):2133-43. doi: 10.1121/1.3544490.
2
Mucosal wave measurement and visualization techniques.
J Voice. 2011 Jul;25(4):395-405. doi: 10.1016/j.jvoice.2010.02.001. Epub 2010 May 15.
3
Three-dimensional nature of the glottal jet.
J Acoust Soc Am. 2010 Mar;127(3):1537-47. doi: 10.1121/1.3299202.
4
A VERSATILE SHARP INTERFACE IMMERSED BOUNDARY METHOD FOR INCOMPRESSIBLE FLOWS WITH COMPLEX BOUNDARIES.
J Comput Phys. 2008;227(10):4825-4852. doi: 10.1016/j.jcp.2008.01.028.
5
Biomechanical modeling of the three-dimensional aspects of human vocal fold dynamics.
J Acoust Soc Am. 2010 Feb;127(2):1014-31. doi: 10.1121/1.3277165.
6
An immersed-boundary method for flow-structure interaction in biological systems with application to phonation.
J Comput Phys. 2008 Nov 20;227(22):9303-9332. doi: 10.1016/j.jcp.2008.05.001.
7
Flow-structure-acoustic interaction in a human voice model.
J Acoust Soc Am. 2009 Mar;125(3):1351-61. doi: 10.1121/1.3068444.
9
A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
Ann Biomed Eng. 2009 Mar;37(3):625-42. doi: 10.1007/s10439-008-9630-9. Epub 2009 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验