Suppr超能文献

细胞内谷胱甘肽向膜结合γ-谷氨酰转肽酶的转运是γ-谷氨酰循环中的一个离散步骤:转肽酶抑制后出现谷胱甘肽尿症。

Translocation of intracellular glutathione to membrane-bound gamma-glutamyl transpeptidase as a discrete step in the gamma-glutamyl cycle: glutathionuria after inhibition of transpeptidase.

作者信息

Griffith O W, Meister A

出版信息

Proc Natl Acad Sci U S A. 1979 Jan;76(1):268-72. doi: 10.1073/pnas.76.1.268.

Abstract

Several inhibitors of gamma-glutamyl transpeptidase in vitro [L-serine plus borate, 6-diazo-5-oxo-L-norleucine, and L- and D-gamma-glutamyl-(o-carboxy)phenylhydrazide] are active in vivo, as indicated by their effect in decreasing the conversion of administered D-gamma-glutamyl-L-alpha-amino[(14)C]butyrate to respiratory (14)CO(2) in mice. The hydrazides (both L and D isomers) are the most potent inhibitors in vitro and in vivo. Inhibition of gamma-glutamyl transpeptidase in vivo by the hydrazides is accompanied by extensive glutahionuria. The evidence suggests that a substantial fraction of the urinary glutathione arises from the kidney. The findings support the view that renal intracellular glutathione is normally translocated to the membrane-bound gamma-glutamyl transpeptidase as a separate step in the gamma-glutamyl cycle. Studies on in vivo inhibition of glutathione synthesis and of gamma-glutamyl transpeptidase provide direct evidence that glutathione is normally translocated from tissues to the blood plasma and that the turnover of plasma glutathione is relatively high. The data suggest that the low but significant steady-state level of glutathione in the plasma reflects synthesis of glutathione (predominantly in the liver) and its utilization by gamma-glutamyl transpeptidase (predominantly in the kidney). Thus, glutathione synthesized in cells that have transpeptidase may be translocated to and used by the membrane-bound enzyme, whereas glutathione synthesized in cells that lack the transpeptidase may be transported via the plasma to transpeptidase located on the membranes of other cells.

摘要

几种γ-谷氨酰转肽酶的体外抑制剂[L-丝氨酸加硼酸盐、6-重氮-5-氧代-L-正亮氨酸以及L-和D-γ-谷氨酰-(邻羧基)苯肼]在体内具有活性,这可通过它们在降低小鼠体内给予的D-γ-谷氨酰-L-α-氨基[(14)C]丁酸向呼吸性(14)CO₂转化方面的作用来表明。肼类化合物(L型和D型异构体)在体外和体内都是最有效的抑制剂。肼类化合物在体内对γ-谷氨酰转肽酶的抑制作用伴随着大量的谷胱甘肽尿。证据表明,尿中相当一部分谷胱甘肽来自肾脏。这些发现支持了这样一种观点,即肾细胞内的谷胱甘肽通常作为γ-谷氨酰循环中的一个独立步骤转运到膜结合的γ-谷氨酰转肽酶处。对谷胱甘肽合成和γ-谷氨酰转肽酶体内抑制作用的研究提供了直接证据,表明谷胱甘肽通常从组织转运到血浆中,并且血浆谷胱甘肽的周转率相对较高。数据表明,血浆中谷胱甘肽低但显著的稳态水平反映了谷胱甘肽的合成(主要在肝脏)及其被γ-谷氨酰转肽酶(主要在肾脏)的利用。因此,在具有转肽酶的细胞中合成的谷胱甘肽可能转运到膜结合酶并被其利用,而在缺乏转肽酶的细胞中合成的谷胱甘肽可能通过血浆转运到位于其他细胞膜上的转肽酶处。

相似文献

3
Glutathione: interorgan translocation, turnover, and metabolism.谷胱甘肽:器官间转运、周转及代谢
Proc Natl Acad Sci U S A. 1979 Nov;76(11):5606-10. doi: 10.1073/pnas.76.11.5606.

引用本文的文献

1
Glutathione-Related Enzymes and Proteins: A Review.谷胱甘肽相关酶和蛋白:综述。
Molecules. 2023 Feb 2;28(3):1447. doi: 10.3390/molecules28031447.
2
Norcyanine-Carbamates Are Versatile Near-Infrared Fluorogenic Probes.硝酰花青酰胺是一种多功能近红外荧光探针。
J Am Chem Soc. 2021 Apr 21;143(15):5674-5679. doi: 10.1021/jacs.1c02112. Epub 2021 Apr 12.
4
Sulfur Metabolism Under Stress.应激状态下的硫代谢
Antioxid Redox Signal. 2020 Dec 1;33(16):1158-1173. doi: 10.1089/ars.2020.8151. Epub 2020 Aug 14.

本文引用的文献

6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验