Bæk Kristoffer T, Jensen Camilla, Farha Maya A, Nielsen Tobias K, Paknejadi Ervin, Mebus Viktor H, Vestergaard Martin, Brown Eric D, Frees Dorte
Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
Front Mol Biosci. 2021 Jun 4;8:691569. doi: 10.3389/fmolb.2021.691569. eCollection 2021.
is a leading cause of bacterial infections world-wide. Staphylococcal infections are preferentially treated with -lactam antibiotics, however, methicillin-resistant (MRSA) strains have acquired resistance to this superior class of antibiotics. We have developed a growth-based, high-throughput screening approach that directly identifies cell wall synthesis inhibitors capable of reversing -lactam resistance in MRSA. The screen is based on the finding that mutants lacking the ClpX chaperone grow very poorly at 30°C unless specific steps in teichoic acid synthesis or penicillin binding protein (PBP) activity are inhibited. This property allowed us to exploit the mutant as a unique screening tool to rapidly identify biologically active compounds that target cell wall synthesis. We tested a library of ∼50,000 small chemical compounds and searched for compounds that inhibited growth of the wild type while stimulating growth of the mutant. Fifty-eight compounds met these screening criteria, and preliminary tests of 10 compounds identified seven compounds that reverse -lactam resistance of MRSA as expected for inhibitors of teichoic acid synthesis. The hit compounds are therefore promising candidates for further development as novel combination agents to restore -lactam efficacy against MRSA.
是全球范围内细菌感染的主要原因。葡萄球菌感染优先使用β-内酰胺类抗生素进行治疗,然而,耐甲氧西林金黄色葡萄球菌(MRSA)菌株已对这类优质抗生素产生耐药性。我们开发了一种基于生长的高通量筛选方法,可直接鉴定能够逆转MRSA中β-内酰胺耐药性的细胞壁合成抑制剂。该筛选基于以下发现:缺乏ClpX伴侣蛋白的突变体在30°C下生长非常缓慢,除非磷壁酸合成或青霉素结合蛋白(PBP)活性中的特定步骤受到抑制。这一特性使我们能够利用该突变体作为独特的筛选工具,快速鉴定靶向细胞壁合成的生物活性化合物。我们测试了一个约50,000种小分子化合物的文库,寻找能够抑制野生型生长同时刺激突变体生长的化合物。58种化合物符合这些筛选标准,对10种化合物的初步测试确定了7种化合物,正如磷壁酸合成抑制剂所预期的那样,它们能够逆转MRSA的β-内酰胺耐药性。因此,这些命中化合物有望作为新型联合用药进一步开发,以恢复β-内酰胺对MRSA的疗效。