Microbiology, School of Biological and Chemical Sciences, University of Galway, Ireland.
Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom.
mBio. 2023 Feb 28;14(1):e0247822. doi: 10.1128/mbio.02478-22. Epub 2022 Dec 12.
The purine-derived signaling molecules c-di-AMP and (p)ppGpp control /PBP2a-mediated β-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) raise the possibility that purine availability can control antibiotic susceptibility. Consistent with this, exogenous guanosine and xanthosine, which are fluxed through the GTP branch of purine biosynthesis, were shown to significantly reduce MRSA β-lactam resistance. In contrast, adenosine (fluxed to ATP) significantly increased oxacillin resistance, whereas inosine (which can be fluxed to ATP and GTP via hypoxanthine) only marginally increased oxacillin susceptibility. Furthermore, mutations that interfere with purine synthesis ( operon), transport (NupG, PbuG, PbuX) and the salvage pathway (DeoD2, Hpt) increased β-lactam resistance in MRSA strain JE2. Increased resistance of a mutant was not significantly reversed by guanosine, indicating that NupG is required for guanosine transport, which is required to reduce β-lactam resistance. Suppressor mutants resistant to oxacillin/guanosine combinations contained several purine salvage pathway mutations, including and . Guanosine significantly increased cell size and reduced levels of c-di-AMP, while inactivation of GdpP, the c-di-AMP phosphodiesterase negated the impact of guanosine on β-lactam susceptibility. PBP2a expression was unaffected in or mutants, suggesting that guanosine-induced β-lactam susceptibility may result from dysfunctional c-di-AMP-dependent osmoregulation. These data reveal the therapeutic potential of purine nucleosides, as β-lactam adjuvants that interfere with the normal activation of c-di-AMP are required for high-level β-lactam resistance in MRSA. The clinical burden of infections caused by antimicrobial resistant (AMR) pathogens is a leading threat to public health. Maintaining the effectiveness of existing antimicrobial drugs or finding ways to reintroduce drugs to which resistance is widespread is an important part of efforts to address the AMR crisis. Predominantly, the safest and most effective class of antibiotics are the β-lactams, which are no longer effective against methicillin-resistant Staphylococcus aureus (MRSA). Here, we report that the purine nucleosides guanosine and xanthosine have potent activity as adjuvants that can resensitize MRSA to oxacillin and other β-lactam antibiotics. Mechanistically, exposure of MRSA to these nucleosides significantly reduced the levels of the cyclic dinucleotide c-di-AMP, which is required for β-lactam resistance. Drugs derived from nucleotides are widely used in the treatment of cancer and viral infections highlighting the clinical potential of using purine nucleosides to restore or enhance the therapeutic effectiveness of β-lactams against MRSA and potentially other AMR pathogens.
嘌呤衍生的信号分子 c-di-AMP 和 (p)ppGpp 控制耐甲氧西林金黄色葡萄球菌 (MRSA) 中 PBP2a 介导的β-内酰胺耐药性,这使得嘌呤可用性可以控制抗生素敏感性成为可能。与此一致的是,外源性鸟苷和黄苷,它们通过嘌呤生物合成的 GTP 分支通量,显著降低了 MRSA 的β-内酰胺耐药性。相比之下,腺苷(通量到 ATP)显著增加了苯唑西林的耐药性,而肌苷(可以通过次黄嘌呤通量到 ATP 和 GTP)仅略微增加了苯唑西林的敏感性。此外,干扰嘌呤合成(操纵子)、运输(NupG、PbuG、PbuX)和补救途径(DeoD2、Hpt)的突变增加了 MRSA 菌株 JE2 的β-内酰胺耐药性。在 MRSA 菌株 JE2 中,突变增加β-内酰胺耐药性,用鸟苷不能显著逆转。这表明 NupG 是鸟苷转运所必需的,而鸟苷转运是降低β-内酰胺耐药性所必需的。对苯唑西林/鸟苷组合具有抗性的抑制突变体含有几种嘌呤补救途径突变,包括 和 。鸟苷显著增加细胞大小并降低 c-di-AMP 水平,而 c-di-AMP 磷酸二酯酶 GdpP 的失活消除了鸟苷对β-内酰胺敏感性的影响。在 或 突变体中,PBP2a 的表达不受影响,表明鸟苷诱导的β-内酰胺敏感性可能是由于 c-di-AMP 依赖性渗透调节功能障碍。这些数据揭示了嘌呤核苷作为β-内酰胺佐剂的治疗潜力,因为干扰 c-di-AMP 正常激活所需的β-内酰胺是 MRSA 中高水平β-内酰胺耐药性所必需的。由抗微生物药物耐药性 (AMR) 病原体引起的感染对公共健康构成的临床负担是一个主要威胁。维持现有抗菌药物的有效性或寻找方法重新引入对其耐药性广泛的药物是解决 AMR 危机的重要组成部分。主要的、最安全和最有效的抗生素类别是β-内酰胺类,它们对耐甲氧西林金黄色葡萄球菌 (MRSA) 不再有效。在这里,我们报告嘌呤核苷鸟苷和黄苷具有作为佐剂的有效活性,可以使 MRSA 对苯唑西林和其他β-内酰胺抗生素重新敏感。从机制上讲,这些核苷暴露于 MRSA 显著降低了环二核苷酸 c-di-AMP 的水平,这是β-内酰胺耐药性所必需的。核苷酸衍生的药物广泛用于癌症和病毒感染的治疗,突出了使用嘌呤核苷恢复或增强β-内酰胺对 MRSA 治疗的临床潜力,可能还有其他 AMR 病原体。