Suppr超能文献

Multi-Scale Structure-Aware Network for Weakly Supervised Temporal Action Detection.

作者信息

Yang Wenfei, Zhang Tianzhu, Mao Zhendong, Zhang Yongdong, Tian Qi, Wu Feng

出版信息

IEEE Trans Image Process. 2021;30:5848-5861. doi: 10.1109/TIP.2021.3089361. Epub 2021 Jun 24.

Abstract

Weakly supervised temporal action detection has better scalability and practicability than fully supervised action detection in reality deployment. However, it is difficult to learn a robust model without temporal action boundary annotations. In this paper, we propose an en-to-end Multi-Scale Structure-Aware Network (MSA-Net) for weakly supervised temporal action detection by exploring both the global structure information of a video and the local structure information of actions. The proposed SA-Net enjoys several merits. First, to localize actions with different durations, each video is encoded into feature representations with different temporal scales. Second, based on the multi-scale feature representation, the proposed model has designed two effective structure modeling mechanisms including global structure modeling and local structure modeling, which can effectively learn discriminative structure aware representations for robust and complete action detection. To the best of our knowledge, this is the first work to fully explore the global and local structure information in a unified deep model for weakly supervised action detection. And extensive experimental results on two benchmark datasets demonstrate that the proposed MSA-Net performs favorably against state-of-the-art methods.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验