Suppr超能文献

用于弱监督时间定位的动作洗牌

Action Shuffling for Weakly Supervised Temporal Localization.

作者信息

Zhang Xiao-Yu, Shi Haichao, Li Changsheng, Shi Xinchu

出版信息

IEEE Trans Image Process. 2022;31:4447-4457. doi: 10.1109/TIP.2022.3185485. Epub 2022 Jul 1.

Abstract

Weakly supervised action localization is a challenging task with extensive applications, which aims to identify actions and the corresponding temporal intervals with only video-level annotations available. This paper analyzes the order-sensitive and location-insensitive properties of actions, and embodies them into a self-augmented learning framework to improve the weakly supervised action localization performance. To be specific, we propose a novel two-branch network architecture with intra/inter-action shuffling, referred to as ActShufNet. The intra-action shuffling branch lays out a self-supervised order prediction task to augment the video representation with inner-video relevance, whereas the inter-action shuffling branch imposes a reorganizing strategy on the existing action contents to augment the training set without resorting to any external resources. Furthermore, the global-local adversarial training is presented to enhance the model's robustness to irrelevant noises. Extensive experiments are conducted on three benchmark datasets, and the results clearly demonstrate the efficacy of the proposed method.

摘要

弱监督动作定位是一项具有广泛应用的挑战性任务,其旨在仅利用可用的视频级注释来识别动作及相应的时间间隔。本文分析了动作的顺序敏感性和位置不敏感性属性,并将它们体现在一个自增强学习框架中,以提高弱监督动作定位性能。具体而言,我们提出了一种具有动作内/动作间洗牌操作的新型双分支网络架构,称为ActShufNet。动作内洗牌分支布置了一个自监督顺序预测任务,以通过视频内相关性增强视频表示,而动作间洗牌分支对现有动作内容施加一种重组策略,以在不借助任何外部资源的情况下扩充训练集。此外,还提出了全局-局部对抗训练以增强模型对无关噪声的鲁棒性。在三个基准数据集上进行了广泛实验,结果清楚地证明了所提方法的有效性。

相似文献

1
Action Shuffling for Weakly Supervised Temporal Localization.用于弱监督时间定位的动作洗牌
IEEE Trans Image Process. 2022;31:4447-4457. doi: 10.1109/TIP.2022.3185485. Epub 2022 Jul 1.
5
Multi-Scale Structure-Aware Network for Weakly Supervised Temporal Action Detection.
IEEE Trans Image Process. 2021;30:5848-5861. doi: 10.1109/TIP.2021.3089361. Epub 2021 Jun 24.
7
Adaptive Two-Stream Consensus Network for Weakly-Supervised Temporal Action Localization.自适应双流共识网络的弱监督时间动作定位。
IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):4136-4151. doi: 10.1109/TPAMI.2022.3189662. Epub 2023 Mar 7.
9
Bilateral Relation Distillation for Weakly Supervised Temporal Action Localization.用于弱监督时间动作定位的双边关系蒸馏
IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):11458-11471. doi: 10.1109/TPAMI.2023.3284853. Epub 2023 Sep 5.
10
Two-Branch Relational Prototypical Network for Weakly Supervised Temporal Action Localization.用于弱监督时间动作定位的双分支关系原型网络
IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):5729-5746. doi: 10.1109/TPAMI.2021.3076172. Epub 2022 Aug 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验