Department of Clinical and Toxicological Analysis, Federal University of Alfenas, Rua Gabriel Monteiro da Silva 700, Centro, Alfenas, MG, 37130-001, Brazil.
Department of Pharmacy, Anhanguera Educacional, São José dos Campos, SP, Brazil.
J Pharmacokinet Pharmacodyn. 2021 Dec;48(6):803-813. doi: 10.1007/s10928-021-09769-6. Epub 2021 Jun 22.
Optimization of antibiotic administration helps minimizing cases of bacterial resistance. Dosages are often selected by trial and error using a pharmacokinetic (PK) model. However, this is limited to the range of tested dosages, restraining possible treatment choices, especially for the loading doses. Colistin is a last-resort antibiotic with a narrow therapeutic window; therefore, its administration should avoid subtherapeutic or toxic concentrations. This study formulates an optimal control problem for dosage selection of colistin based on a PK model, minimizing deviations of colistin concentration to a target value and allowing a specific dosage optimization for a given individual. An adjoint model was used to provide the sensitivity of concentration deviations to dose changes. A three-compartment PK model was adopted. The standard deviation between colistin plasma concentrations and a target set at 2 mg/L was minimized for some chosen treatments and sample patients. Significantly lower deviations from the target concentration are obtained for shorter administration intervals (e.g. every 8 h) compared to longer ones (e.g. every 24 h). For patients with normal or altered renal function, the optimal loading dose regimen should be divided into two or more administrations to attain the target concentration quickly, with a high first loading dose followed by much lower ones. This regimen is not easily obtained by trial and error, highlighting advantages of the method. The present method is a refined optimization of antibiotic dosage for the treatment of infections. Results for colistin suggest significant improvement in treatment avoiding subtherapeutic or toxic concentrations.
优化抗生素的使用有助于最大限度地减少细菌耐药性的发生。剂量通常通过使用药代动力学(PK)模型进行反复试验来选择。然而,这仅限于已测试剂量的范围,限制了可能的治疗选择,特别是对于负荷剂量。多粘菌素是一种治疗选择有限的最后手段抗生素,治疗窗狭窄;因此,其给药应避免低于治疗浓度或毒性浓度。本研究基于 PK 模型为多粘菌素的剂量选择制定了一个最优控制问题,将多粘菌素浓度的偏差最小化到目标值,并允许对特定个体进行特定的剂量优化。采用伴随模型提供浓度偏差对剂量变化的敏感性。采用三房室 PK 模型。选择一些治疗方案和样本患者,将多粘菌素血浆浓度与设定为 2mg/L 的目标值之间的标准偏差最小化。与较长的给药间隔(例如每 24 小时)相比,较短的给药间隔(例如每 8 小时)可使目标浓度的偏差显著降低。对于肾功能正常或异常的患者,最佳的负荷剂量方案应分为两次或更多次给药,以便快速达到目标浓度,第一次负荷剂量较高,随后剂量较低。这种方案不容易通过反复试验获得,这凸显了该方法的优势。本方法是对感染治疗中抗生素剂量的一种精细化优化。多粘菌素的结果表明,该方法在避免低于治疗浓度或毒性浓度的治疗方面有显著的改善。