Pieczynski Janusz, Kuklo Patrycja, Grzybowski Andrzej
Chair of Ophthalmology, University of Warmia and Mazury, Zolnierska 18, 10-561, Olsztyn, Poland.
The Voivodal Specialistic Hospital in Olsztyn, Olsztyn, Poland.
Ophthalmol Ther. 2021 Sep;10(3):445-464. doi: 10.1007/s40123-021-00353-2. Epub 2021 Jun 22.
In the presence of the ever-increasing incidence of diabetes mellitus (DM), the prevalence of diabetic eye disease (DED) is also growing. Despite many improvements in diabetic care, DM remains a leading cause of visual impairment in working-age patients. So far, prevention has been the best way to protect vision. The sooner we diagnose DED, the more effective the treatment is. Thus, diabetic retinopathy (DR) screening, especially with imaging techniques, is a method of choice for vision protection. To alleviate the burden of diabetic patients who need ophthalmic care, telemedicine and in-home testing are used, supported by artificial intelligence (AI) algorithms. This is why we decided to evaluate current image teleophthalmology methods used for DR screening. We searched the PubMed platform for papers published over the last 5 years (2015-2020) using the following key words: telemedicine in diabetic retinopathy screening, diabetic retinopathy screening, automated diabetic retinopathy screening, artificial intelligence in diabetic retinopathy screening, smartphone diabetic retinopathy testing. We have included 118 original articles meeting the above criteria, discussing imaging diabetic retinopathy screening methods. We have found that fundus cameras, stable or mobile, are most commonly used for retinal photography, with portable fundus cameras also relatively common. Other possibilities involve the use of ultra-wide-field (UWF) imaging and even optical coherence tomography (OCT) devices for DR screening. Also, the role of smartphones is increasingly recognized in the field. Retinal fundus images are assessed by humans instantly or remotely, while AI algorithms seem to be useful tools facilitating retinal image assessment. The common use of smartphones and availability of relatively cheap, easy-to-use adapters for retinal photographs augmented by AI algorithms make it possible for eye fundus photographs to be taken by non-specialists and in non-medical setting. This opens the way for in-home testing conducted on a much larger scale in the future. In conclusion, based on current DR screening techniques, we can suggest that the future practice of eye care specialists will be widely supported by AI algorithms, and this way will be more effective.
在糖尿病(DM)发病率不断上升的情况下,糖尿病眼病(DED)的患病率也在增加。尽管糖尿病护理有了许多改进,但DM仍然是工作年龄患者视力损害的主要原因。到目前为止,预防一直是保护视力的最佳方法。我们诊断DED越早,治疗效果就越好。因此,糖尿病视网膜病变(DR)筛查,尤其是采用成像技术的筛查,是保护视力的首选方法。为了减轻需要眼科护理的糖尿病患者的负担,在人工智能(AI)算法的支持下,采用了远程医疗和家庭检测。这就是我们决定评估目前用于DR筛查的图像远程眼科方法的原因。我们在PubMed平台上搜索了过去5年(2015 - 2020年)发表的论文,使用了以下关键词:糖尿病视网膜病变筛查中的远程医疗、糖尿病视网膜病变筛查、自动化糖尿病视网膜病变筛查、糖尿病视网膜病变筛查中的人工智能、智能手机糖尿病视网膜病变检测。我们纳入了118篇符合上述标准的原创文章,讨论了糖尿病视网膜病变成像筛查方法。我们发现,固定式或移动式眼底相机最常用于视网膜摄影,便携式眼底相机也相对常见。其他可能性包括使用超广角(UWF)成像甚至光学相干断层扫描(OCT)设备进行DR筛查。此外,智能手机在该领域的作用也越来越受到认可。视网膜眼底图像由人工即时或远程评估,而AI算法似乎是有助于视网膜图像评估的有用工具。智能手机的普遍使用以及相对便宜、易于使用的视网膜照片适配器的可用性,加上AI算法,使得非专业人员可以在非医疗环境中拍摄眼底照片。这为未来更广泛地开展家庭检测开辟了道路。总之,基于目前的DR筛查技术,我们可以认为,未来眼科护理专家的实践将得到AI算法的广泛支持,并且这种方式将更有效。