Suppr超能文献

利用人工智能提升眼科诊断与治疗水平。

Enhancing Ophthalmic Diagnosis and Treatment with Artificial Intelligence.

作者信息

Olawade David B, Weerasinghe Kusal, Mathugamage Mathugamage Don Dasun Eranga, Odetayo Aderonke, Aderinto Nicholas, Teke Jennifer, Boussios Stergios

机构信息

Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London E16 2RD, UK.

Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK.

出版信息

Medicina (Kaunas). 2025 Feb 28;61(3):433. doi: 10.3390/medicina61030433.

Abstract

The integration of artificial intelligence (AI) in ophthalmology is transforming the field, offering new opportunities to enhance diagnostic accuracy, personalize treatment plans, and improve service delivery. This review provides a comprehensive overview of the current applications and future potential of AI in ophthalmology. AI algorithms, particularly those utilizing machine learning (ML) and deep learning (DL), have demonstrated remarkable success in diagnosing conditions such as diabetic retinopathy (DR), age-related macular degeneration, and glaucoma with precision comparable to, or exceeding, human experts. Furthermore, AI is being utilized to develop personalized treatment plans by analyzing large datasets to predict individual responses to therapies, thus optimizing patient outcomes and reducing healthcare costs. In surgical applications, AI-driven tools are enhancing the precision of procedures like cataract surgery, contributing to better recovery times and reduced complications. Additionally, AI-powered teleophthalmology services are expanding access to eye care in underserved and remote areas, addressing global disparities in healthcare availability. Despite these advancements, challenges remain, particularly concerning data privacy, security, and algorithmic bias. Ensuring robust data governance and ethical practices is crucial for the continued success of AI integration in ophthalmology. In conclusion, future research should focus on developing sophisticated AI models capable of handling multimodal data, including genetic information and patient histories, to provide deeper insights into disease mechanisms and treatment responses. Also, collaborative efforts among governments, non-governmental organizations (NGOs), and technology companies are essential to deploy AI solutions effectively, especially in low-resource settings.

摘要

人工智能(AI)在眼科领域的整合正在改变这一领域,为提高诊断准确性、个性化治疗方案以及改善服务提供带来了新机遇。本综述全面概述了AI在眼科领域的当前应用和未来潜力。AI算法,尤其是那些利用机器学习(ML)和深度学习(DL)的算法,在诊断糖尿病视网膜病变(DR)、年龄相关性黄斑变性和青光眼等病症方面已取得显著成功,其精准度可与人类专家相媲美甚至超越人类专家。此外,AI正被用于通过分析大型数据集来制定个性化治疗方案,以预测个体对治疗的反应,从而优化患者治疗效果并降低医疗成本。在手术应用中,AI驱动的工具正在提高白内障手术等操作的精准度,有助于缩短恢复时间并减少并发症。此外,由AI支持的远程眼科服务正在扩大服务不足和偏远地区的眼保健服务可及性,解决全球医疗服务可及性方面的差距。尽管取得了这些进展,但挑战依然存在,特别是在数据隐私、安全和算法偏差方面。确保强大的数据治理和道德规范对于AI在眼科领域整合的持续成功至关重要。总之,未来的研究应专注于开发能够处理多模态数据(包括基因信息和患者病史)的复杂AI模型,以便更深入地了解疾病机制和治疗反应。此外,政府、非政府组织(NGO)和科技公司之间的合作对于有效部署AI解决方案至关重要,尤其是在资源匮乏的环境中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0016/11943519/21cc103b3d24/medicina-61-00433-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验