文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于非负矩阵分解的 scRNA-seq 数据无监督聚类分析和基因标志物提取。

Unsupervised Cluster Analysis and Gene Marker Extraction of scRNA-seq Data Based On Non-Negative Matrix Factorization.

出版信息

IEEE J Biomed Health Inform. 2022 Jan;26(1):458-467. doi: 10.1109/JBHI.2021.3091506. Epub 2022 Jan 17.


DOI:10.1109/JBHI.2021.3091506
PMID:34156956
Abstract

The development of single-cell RNA sequencing (scRNA-seq) technology has made it possible to measure gene expression levels at the resolution of a single cell, which further reveals the complex growth processes of cells such as mutation and differentiation. Recognizing cell heterogeneity is one of the most critical tasks in scRNA-seq research. To solve it, we propose a non-negative matrix factorization framework based on multi-subspace cell similarity learning for unsupervised scRNA-seq data analysis (MscNMF). MscNMF includes three parts: data decomposition, similarity learning, and similarity fusion. The three work together to complete the data similarity learning task. MscNMF can learn the gene features and cell features of different subspaces, and the correlation and heterogeneity between cells will be more prominent in multi-subspaces. The redundant information and noise in each low-dimensional feature space are eliminated, and its gene weight information can be further analyzed to calculate the optimal number of subpopulations. The final cell similarity learning will be more satisfactory due to the fusion of cell similarity information in different subspaces. The advantage of MscNMF is that it can calculate the number of cell types and the rank of Non-negative matrix factorization (NMF) reasonably. Experiments on eight real scRNA-seq datasets show that MscNMF can effectively perform clustering tasks and extract useful genetic markers. To verify its clustering performance, the framework is compared with other latest clustering algorithms and satisfactory results are obtained. The code of MscNMF is free available for academic (https://github.com/wangchuanyuan1/project-MscNMF).

摘要

单细胞 RNA 测序(scRNA-seq)技术的发展使得能够以单细胞的分辨率测量基因表达水平,这进一步揭示了细胞的复杂生长过程,如突变和分化。识别细胞异质性是 scRNA-seq 研究中最关键的任务之一。为了解决这个问题,我们提出了一种基于多子空间细胞相似性学习的非负矩阵分解框架,用于无监督 scRNA-seq 数据分析(MscNMF)。MscNMF 包括三个部分:数据分解、相似性学习和相似性融合。这三个部分共同完成数据相似性学习任务。MscNMF 可以学习不同子空间的基因特征和细胞特征,细胞之间的相关性和异质性在多子空间中更加突出。消除了每个低维特征空间中的冗余信息和噪声,并且可以进一步分析其基因权重信息来计算最佳亚群数量。由于融合了不同子空间中的细胞相似信息,最终的细胞相似性学习将更加令人满意。MscNMF 的优势在于它可以合理地计算细胞类型的数量和非负矩阵分解(NMF)的秩。在八个真实的 scRNA-seq 数据集上的实验表明,MscNMF 可以有效地执行聚类任务并提取有用的遗传标记。为了验证其聚类性能,将该框架与其他最新的聚类算法进行了比较,得到了令人满意的结果。MscNMF 的代码可免费用于学术研究(https://github.com/wangchuanyuan1/project-MscNMF)。

相似文献

[1]
Unsupervised Cluster Analysis and Gene Marker Extraction of scRNA-seq Data Based On Non-Negative Matrix Factorization.

IEEE J Biomed Health Inform. 2022-1

[2]
JLONMFSC: Clustering scRNA-seq data based on joint learning of non-negative matrix factorization and subspace clustering.

Methods. 2024-2

[3]
A Personalized Low-Rank Subspace Clustering Method Based on Locality and Similarity Constraints for scRNA-seq Data Analysis.

IEEE J Biomed Health Inform. 2023-5

[4]
SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.

Brief Bioinform. 2023-5-19

[5]
Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.

Brief Bioinform. 2022-5-13

[6]
Network-Based Structural Learning Nonnegative Matrix Factorization Algorithm for Clustering of scRNA-Seq Data.

IEEE/ACM Trans Comput Biol Bioinform. 2023

[7]
Single-cell data clustering based on sparse optimization and low-rank matrix factorization.

G3 (Bethesda). 2021-6-17

[8]
Multi-View Clustering With Graph Learning for scRNA-Seq Data.

IEEE/ACM Trans Comput Biol Bioinform. 2023

[9]
Graph-Regularized Non-Negative Matrix Factorization for Single-Cell Clustering in scRNA-Seq Data.

IEEE J Biomed Health Inform. 2024-8

[10]
Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.

Brief Bioinform. 2023-7-20

引用本文的文献

[1]
Adaptive clustering for medical image analysis using the improved separation index.

Sci Rep. 2025-8-1

[2]
SeqBMC: Single-cell data processing using iterative block matrix completion algorithm based on matrix factorisation.

IET Syst Biol. 2025

[3]
Cauchy hyper-graph Laplacian nonnegative matrix factorization for single-cell RNA-sequencing data analysis.

BMC Bioinformatics. 2024-4-29

[4]
Dissecting Cellular Heterogeneity Based on Network Denoising of scRNA-seq Using Local Scaling Self-Diffusion.

Front Genet. 2022-1-10

[5]
One-Step Robust Low-Rank Subspace Segmentation for Tumor Sample Clustering.

Comput Intell Neurosci. 2021

[6]
SCDRHA: A scRNA-Seq Data Dimensionality Reduction Algorithm Based on Hierarchical Autoencoder.

Front Genet. 2021-8-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索