Suppr超能文献

基于局部性和相似性约束的个性化低秩子空间聚类方法在 scRNA-seq 数据分析中的应用。

A Personalized Low-Rank Subspace Clustering Method Based on Locality and Similarity Constraints for scRNA-seq Data Analysis.

出版信息

IEEE J Biomed Health Inform. 2023 May;27(5):2575-2584. doi: 10.1109/JBHI.2023.3247723. Epub 2023 May 4.

Abstract

Single-cell RNA sequencing (scRNA-seq) technology can provide expression profile of single cells, which propels biological research into a new chapter. Clustering individual cells based on their transcriptome is a critical objective of scRNA-seq data analysis. However, the high-dimensional, sparse and noisy nature of scRNA-seq data pose a challenge to single-cell clustering. Therefore, it is urgent to develop a clustering method targeting scRNA-seq data characteristics. Due to its powerful subspace learning capability and robustness to noise, the subspace segmentation method based on low-rank representation (LRR) is broadly used in clustering researches and achieves satisfactory results. In view of this, we propose a personalized low-rank subspace clustering method, namely PLRLS, to learn more accurate subspace structures from both global and local perspectives. Specifically, we first introduce the local structure constraint to capture the local structure information of the data, while helping our method to obtain better inter-cluster separability and intra-cluster compactness. Then, in order to retain the important similarity information that is ignored by the LRR model, we utilize the fractional function to extract similarity information between cells, and introduce this information as the similarity constraint into the LRR framework. The fractional function is an efficient similarity measure designed for scRNA-seq data, which has theoretical and practical implications. In the end, based on the LRR matrix learned from PLRLS, we perform downstream analyses on real scRNA-seq datasets, including spectral clustering, visualization and marker gene identification. Comparative experiments show that the proposed method achieves superior clustering accuracy and robustness.

摘要

单细胞 RNA 测序 (scRNA-seq) 技术可以提供单个细胞的表达谱,将生物学研究推进到一个新的篇章。基于转录组对个体细胞进行聚类是 scRNA-seq 数据分析的一个关键目标。然而,scRNA-seq 数据的高维、稀疏和噪声性质给单细胞聚类带来了挑战。因此,迫切需要开发一种针对 scRNA-seq 数据特征的聚类方法。由于其强大的子空间学习能力和对噪声的鲁棒性,基于低秩表示 (LRR) 的子空间分割方法在聚类研究中得到了广泛应用,并取得了令人满意的结果。鉴于此,我们提出了一种个性化的低秩子空间聚类方法,即 PLRLS,从全局和局部两个角度学习更准确的子空间结构。具体来说,我们首先引入局部结构约束来捕获数据的局部结构信息,同时帮助我们的方法获得更好的类间可分离性和类内紧凑性。然后,为了保留 LRR 模型忽略的重要相似性信息,我们利用分数函数提取细胞之间的相似性信息,并将此信息作为相似性约束引入 LRR 框架。分数函数是专为 scRNA-seq 数据设计的有效相似性度量,具有理论和实际意义。最后,基于 PLRLS 学习到的 LRR 矩阵,我们对真实的 scRNA-seq 数据集进行下游分析,包括谱聚类、可视化和标记基因识别。对比实验表明,所提出的方法具有优越的聚类准确性和鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验