Suppr超能文献

使用 miCLIP2 和 m6Aboost 机器学习技术进行深度准确的 m6A RNA 修饰检测。

Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning.

机构信息

Institute of Molecular Biology (IMB), Mainz 55128, Germany.

Buchmann Institute for Molecular Life Sciences (BMLS) & Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt 60438, Germany.

出版信息

Nucleic Acids Res. 2021 Sep 20;49(16):e92. doi: 10.1093/nar/gkab485.

Abstract

N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic mRNAs and influences many aspects of RNA processing. miCLIP (m6A individual-nucleotide resolution UV crosslinking and immunoprecipitation) is an antibody-based approach to map m6A sites with single-nucleotide resolution. However, due to broad antibody reactivity, reliable identification of m6A sites from miCLIP data remains challenging. Here, we present miCLIP2 in combination with machine learning to significantly improve m6A detection. The optimized miCLIP2 results in high-complexity libraries from less input material. Importantly, we established a robust computational pipeline to tackle the inherent issue of false positives in antibody-based m6A detection. The analyses were calibrated with Mettl3 knockout cells to learn the characteristics of m6A deposition, including m6A sites outside of DRACH motifs. To make our results universally applicable, we trained a machine learning model, m6Aboost, based on the experimental and RNA sequence features. Importantly, m6Aboost allows prediction of genuine m6A sites in miCLIP2 data without filtering for DRACH motifs or the need for Mettl3 depletion. Using m6Aboost, we identify thousands of high-confidence m6A sites in different murine and human cell lines, which provide a rich resource for future analysis. Collectively, our combined experimental and computational methodology greatly improves m6A identification.

摘要

N6-甲基腺苷(m6A)是真核生物 mRNA 中最丰富的内部 RNA 修饰物,影响 RNA 加工的许多方面。miCLIP(m6A 单核苷酸分辨率 UV 交联和免疫沉淀)是一种基于抗体的方法,可实现 m6A 位点的单核苷酸分辨率作图。然而,由于抗体广泛的反应性,从 miCLIP 数据中可靠地鉴定 m6A 位点仍然具有挑战性。在这里,我们提出了结合机器学习的 miCLIP2,以显著提高 m6A 的检测能力。优化后的 miCLIP2 可从较少的输入材料中获得高复杂度的文库。重要的是,我们建立了一个稳健的计算管道来解决抗体-based m6A 检测中固有的假阳性问题。通过 Mettl3 敲除细胞的分析来校准,以了解 m6A 沉积的特征,包括 DRACH 基序之外的 m6A 位点。为了使我们的结果具有普遍性,我们基于实验和 RNA 序列特征训练了一个机器学习模型 m6Aboost。重要的是,m6Aboost 允许在不过滤 DRACH 基序或不需要 Mettl3 耗竭的情况下,对 miCLIP2 数据中的真实 m6A 位点进行预测。使用 m6Aboost,我们在不同的鼠和人细胞系中鉴定了数千个高可信度的 m6A 位点,为未来的分析提供了丰富的资源。总的来说,我们结合了实验和计算方法,大大提高了 m6A 的鉴定能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2744/8450095/196a6d54931e/gkab485fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验