Suppr超能文献

脑毛细血管血流异质性及其对脑组织氧水平影响的数学建模。

Mathematical modeling of cerebral capillary blood flow heterogeneity and its effect on brain tissue oxygen levels.

机构信息

Department of Mathematics, The Ohio State University, Columbus, OH 43210 USA.

Department of Mathematics, The Ohio State University, Columbus, OH 43210 USA.

出版信息

J Theor Biol. 2021 Oct 21;527:110817. doi: 10.1016/j.jtbi.2021.110817. Epub 2021 Jun 23.

Abstract

Maintaining cerebral blood flow is critical for adequate neuronal function. Previous computational models of brain capillary networks have predicted that heterogeneous cerebral capillary flow patterns result in lower brain tissue partial oxygen pressures PO2). However, these previous models have often considered simple capillary networks in terms of their geometric properties. In this current work, we developed and analyzed computational models of brain capillary networks to determine how perturbations of network properties impact tissue oxygen levels. The models include variabilities in both their geometric (segment lengths and diameters) and three-dimensional, topological structure. Two classes of capillary network models are considered. The first consists of equations for the oxygen partial pressure, PO, in both a capillary network and the surrounding tissue. In order to gain insight into the behavior of this detailed model, we also consider a reduced model for changes in PO in just the capillary network. The main result is that for a general class of networks, random perturbations of either segment diameters or conductances will always, on average, decrease the average tissue oxygen levels. This result is supported through both simulations of the models and mathematical analysis. Our results promise to expand our understanding of cerebral capillary blood flow and its impact on the brain function in health and disease.

摘要

维持脑血流对于神经元功能的充分发挥至关重要。先前关于脑毛细血管网络的计算模型预测,异质的脑毛细血管流动模式会导致脑组织局部氧分压(PO2)降低。然而,这些先前的模型通常仅从几何性质方面来考虑简单的毛细血管网络。在目前这项工作中,我们开发并分析了脑毛细血管网络的计算模型,以确定网络属性的干扰如何影响组织中的氧水平。这些模型包括几何形状(段长和直径)和三维拓扑结构的可变性。考虑了两类毛细血管网络模型。第一类包括毛细血管网络和周围组织中氧分压(PO)的方程。为了深入了解这个详细模型的行为,我们还考虑了仅在毛细血管网络中 PO 变化的简化模型。主要结果是,对于一般的网络类型,段直径或电导率的随机干扰平均而言总是会降低平均组织氧水平。该结果通过对模型的模拟和数学分析得到了支持。我们的研究结果有望扩展我们对脑毛细血管血流及其对健康和疾病中大脑功能影响的理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验