Healthcare Technologies Institute, University of Birmingham, Birmingham, B15 2TT, UK.
Adv Healthc Mater. 2021 Aug;10(16):e2100622. doi: 10.1002/adhm.202100622. Epub 2021 Jun 23.
This study reports the first fully synthetic fluid gel (SyMGels) using a simple poly(ethylene glycol) polymer. Fluid gels are an interesting class of materials: structured during gelation via shear-confinement to form microparticulate suspensions, through a bottom-up approach. Structuring in this way, when compared to first forming a gel and subsequently breaking it down, results in the formation of a particulate dispersion with particles "grown" in the shear flow. Resultantly, systems form a complex microstructure, where gelled particles concentrate remaining non-gelled polymer within the continuous phase, creating an amorphous-like interstitial phase. As such, these materials demonstrate mechanical characteristics typical of colloidal glasses, presenting solid-like behaviors at rest with defined yielding; likely through intrinsic particle-particle and particle-polymer interactions. To date, fluid gels have been fabricated using polysaccharides with relatively complex chemistries, making further modifications challenging. SyMGels are easily functionalised, using simple click-chemistry. This chemical flexibility, allows the creation of microenvironments with discrete biological decoration. Cellular control is demonstrated using MSC (mesenchymal stem cells)/chondrocytes and enables the regulation of key biomarkers such as aggrecan and SOX9. These potential therapeutic platforms demonstrate an important advancement in the biomaterial field, underpinning the mechanisms which drive their mechanical properties, and providing a versatile delivery system for advanced therapeutics.
本研究报告了首例使用简单聚乙二醇聚合物制备的全合成流体凝胶(SyMGels)。流体凝胶是一类有趣的材料:在凝胶化过程中通过剪切限制形成微颗粒悬浮液,采用自下而上的方法进行结构设计。通过这种方式进行结构设计,与首先形成凝胶然后再将其分解的方法相比,可在剪切流中“生长”颗粒,从而形成具有颗粒的分散体。因此,这些系统形成了复杂的微观结构,其中凝胶颗粒将剩余的未凝胶化聚合物集中在连续相中,形成类似非晶态的间隙相。因此,这些材料表现出胶体玻璃的典型力学特性,在静止时表现出类似固体的行为,并具有明确的屈服性;这可能是由于颗粒-颗粒和颗粒-聚合物之间的固有相互作用。迄今为止,流体凝胶是使用相对复杂化学性质的多糖来制备的,这使得进一步的修饰变得具有挑战性。SyMGels 可通过简单的点击化学进行功能化。这种化学灵活性允许创建具有离散生物修饰的微环境。使用 MSC(间充质干细胞)/软骨细胞进行细胞控制,并能够调节聚集蛋白聚糖和 SOX9 等关键生物标志物。这些潜在的治疗平台在生物材料领域取得了重要进展,为其力学性能的驱动机制提供了基础,并为先进治疗方法提供了多功能的输送系统。