Suppr超能文献

双金属 MOFs 衍生的珊瑚状 Ag-MoC/C 互穿纳米棒用于电流型检测过氧化氢。

Bimetallic MOFs-derived coral-like Ag-MoC/C interwoven nanorods for amperometric detection of hydrogen peroxide.

机构信息

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, People's Republic of China.

College of Science, Heihe University, Heihe, 164300, People's Republic of China.

出版信息

Mikrochim Acta. 2021 Jun 23;188(7):234. doi: 10.1007/s00604-021-04888-w.

Abstract

Coral-like Ag-MoC/C-I and blocky Ag-MoC/C-II composites were obtained from one-step in situ calcination of [Ag(HL)(MoO)]·nHO [L: N-(pyridin-3-ylmethyl) pyridine-2-amine] under N/H and N atmospheres, respectively. The coral-like morphology of Ag-MoC/C-I is composed of interwoven nanorods embedded with small particles, and the nano-aggregate of Ag-MoC/C-II is formed by cross-linkage of irregular nanoparticles. The above composites are decorated on glassy carbon electrode (GCE) drop by drop to generate two enzyme-free electrochemical sensors (Ag-MoC/C/GCE) for amperometric detection of HO. In particular, the coral-like Ag-MoC/C-I/GCE sensor possesses rapid response (1.2 s), high sensitivity (466.2 μA·mM·cm), and low detection limit (25 nM) towards trace HO and has wide linear range (0.08 μM~4.67 mM) and good stability. All these sensing performances are superior to Ag-MoC/C-II/GCE, indicating that the calcining atmosphere has an important influence on microstructure and electrochemical properties. The excellent electrochemical HO sensing performance of Ag-MoC/C-I/GCE sensor is mainly attributed to the synergism of unique microstructure, platinum-like electron structure of MoC, strong interaction between Mo and Ag, as well as the increased active sites and conductivity caused by co-doped Ag and carbon. Furthermore, this sensor has been successfully applied to the detection of HO in human serum sample, contact lens solution, and commercial disinfector, demonstrating the potential in related fields of environment and biology. Graphical abstract.

摘要

珊瑚状 Ag-MoC/C-I 和块状 Ag-MoC/C-II 复合材料分别通过 [Ag(HL)(MoO)]·nH2O [L:N-(吡啶-3-基甲基)吡啶-2-胺] 在 N/H 和 N 气氛下的一步原位煅烧得到。Ag-MoC/C-I 的珊瑚状形态由相互交织的纳米棒组成,其中嵌入有小颗粒,而 Ag-MoC/C-II 的纳米聚集体则由不规则纳米颗粒的交联形成。将上述复合材料逐滴滴涂在玻碳电极(GCE)上,生成两种无酶电化学传感器(Ag-MoC/C/GCE),用于 HO 的安培检测。特别是珊瑚状的 Ag-MoC/C-I/GCE 传感器对痕量 HO 具有快速响应(1.2 s)、高灵敏度(466.2 μA·mM·cm)和低检测限(25 nM),并且具有较宽的线性范围(0.08 μM~4.67 mM)和良好的稳定性。所有这些传感性能均优于 Ag-MoC/C-II/GCE,表明煅烧气氛对微观结构和电化学性能有重要影响。Ag-MoC/C-I/GCE 传感器对 HO 的优异电化学传感性能主要归因于独特的微观结构、MoC 的类铂电子结构、Mo 和 Ag 之间的强相互作用以及掺 Ag 和碳引起的活性位点增加和导电性增强。此外,该传感器已成功应用于人血清样品、隐形眼镜溶液和商业消毒剂中 HO 的检测,显示了在环境和生物学相关领域的应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验