揭示用于全固态锂电池的LiLaZrO/PEO(LiTFSI)复合聚合物-陶瓷固体电解质中的界面锂离子动力学
Unveiling Interfacial Li-Ion Dynamics in LiLaZrO/PEO(LiTFSI) Composite Polymer-Ceramic Solid Electrolytes for All-Solid-State Lithium Batteries.
作者信息
Bonilla Mauricio R, García Daza Fabián A, Ranque Pierre, Aguesse Frederic, Carrasco Javier, Akhmatskaya Elena
机构信息
BCAM-Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009 Bilbao, Spain.
Department of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL Manchester, U.K.
出版信息
ACS Appl Mater Interfaces. 2021 Jul 7;13(26):30653-30667. doi: 10.1021/acsami.1c07029. Epub 2021 Jun 23.
Unlocking the full potential of solid-state electrolytes (SSEs) is key to enabling safer and more-energy dense technologies than today's Li-ion batteries. In particular, composite materials comprising a conductive, flexible polymer matrix embedding ceramic filler particles are emerging as a good strategy to provide the combination of conductivity and mechanical and chemical stability demanded from SSEs. However, the electrochemical activity of these materials strongly depends on their polymer/ceramic interfacial Li-ion dynamics at the molecular scale, whose fundamental understanding remains elusive. While this interface has been explored for nonconductive ceramic fillers, atomistic modeling of interfaces involving a potentially more promising conductive ceramic filler is still lacking. We address this shortfall by employing molecular dynamics and enhanced Monte Carlo techniques to gain unprecedented insights into the interfacial Li-ion dynamics in a composite polymer-ceramic electrolyte, which integrates polyethylene oxide plus LiN(CFSO) lithium imide salt (LiTFSI), and Li-ion conductive cubic LiLaZrO (LLZO) inclusions. Our simulations automatically produce the interfacial Li-ion distribution assumed in space-charge models and, for the first time, a long-range impact of the garnet surface on the Li-ion diffusivity is unveiled. Based on our calculations and experimental measurements of tensile strength and ionic conductivity, we are able to explain a previously reported drop in conductivity at a critical filler fraction well below the theoretical percolation threshold. Our results pave the way for the computational modeling of other conductive filler/polymer combinations and the rational design of composite SSEs.
释放固态电解质(SSE)的全部潜力是实现比当今锂离子电池更安全、能量密度更高的技术的关键。特别是,由嵌入陶瓷填料颗粒的导电、柔性聚合物基体组成的复合材料正在成为一种很好的策略,以提供SSE所需的导电性、机械稳定性和化学稳定性的组合。然而,这些材料的电化学活性在很大程度上取决于其在分子尺度上的聚合物/陶瓷界面锂离子动力学,而对其基本理解仍然难以捉摸。虽然已经对非导电陶瓷填料的这种界面进行了探索,但仍缺乏对涉及潜在更有前景的导电陶瓷填料的界面的原子尺度建模。我们通过采用分子动力学和增强蒙特卡罗技术来解决这一不足,从而对复合聚合物-陶瓷电解质中的界面锂离子动力学获得前所未有的见解,该复合电解质包含聚环氧乙烷加LiN(CFSO)锂亚胺盐(LiTFSI)以及锂离子导电立方LiLaZrO(LLZO)夹杂物。我们的模拟自动生成了空间电荷模型中假设的界面锂离子分布,并且首次揭示了石榴石表面对锂离子扩散率的远程影响。基于我们的计算以及拉伸强度和离子电导率的实验测量,我们能够解释先前报道的在远低于理论渗流阈值的临界填料分数下电导率下降的现象。我们的结果为其他导电填料/聚合物组合的计算建模以及复合SSE的合理设计铺平了道路。