Suppr超能文献

聚合物-硫银锗矿界面处的离子传输

Ion Transport at Polymer-Argyrodite Interfaces.

作者信息

Chen Yuxi, Liang Dongyue, Lee Elizabeth M Y, Muy Sokseiha, Guillaume Maxime, Braida Marc-David, Emery Antoine A, Marzari Nicola, de Pablo Juan J

机构信息

Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.

Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States.

出版信息

ACS Appl Mater Interfaces. 2024 Sep 11;16(36):48223-48234. doi: 10.1021/acsami.4c07440. Epub 2024 Aug 30.

Abstract

Solid-state electrolytes, particularly polymer/ceramic composite electrolytes, are emerging as promising candidates for lithium-ion batteries due to their high ionic conductivity and mechanical flexibility. The interfaces that arise between the inorganic and organic materials in these composites play a crucial role in ion transport mechanisms. While lithium ions are proposed to diffuse across or parallel to the interface, few studies have directly examined the quantitative impact of these pathways on ion transport and little is known about how they affect the overall conductivity. Here, we present an atomistic study of lithium-ion (Li) transport across well-defined polymer-argyrodite interfaces. We present a force field for polymer-argyrodite interfacial systems, and we carry out molecular dynamics and enhanced sampling simulations of several composite systems, including poly(ethylene oxide) (PEO)/LiPSCl, hydrogenated nitrile butadiene rubber (HNBR)/LiPSCl, and poly(vinylidene fluoride--hexafluoropropylene) (PVDF-HFP)/LiPSCl. For the materials considered here, Li-ion exhibits a preference for the ceramic material, as revealed by free energy differences for Li-ion between the inorganic and the organic polymer phase in excess of 13 . The relative free energy profiles of Li-ion for different polymeric materials exhibit similar shapes, but their magnitude depends on the strength of interaction between the polymers and Li-ion: the greater the interaction between the polymer and Li-ions, the smaller the free energy difference between the inorganic and organic materials. The influence of the interface is felt over a range of approximately 1.5 nm, after which the behavior of Li-ion in the polymer is comparable to that in the bulk. Near the interface, Li-ion transport primarily occurs parallel to the interfacial plane, and ion mobility is considerably slower near the interface itself, consistent with the reduced segmental mobility of the polymer in the vicinity of the ceramic material. These findings provide insights into ionic complexation and transport mechanisms in composite systems, and will help improve design of improved solid electrolyte systems.

摘要

固态电解质,尤其是聚合物/陶瓷复合电解质,因其高离子电导率和机械柔韧性,正成为锂离子电池的有前景的候选材料。这些复合材料中无机和有机材料之间形成的界面在离子传输机制中起着关键作用。虽然有人提出锂离子会穿过界面或与界面平行扩散,但很少有研究直接考察这些路径对离子传输的定量影响,对于它们如何影响整体电导率也知之甚少。在此,我们展示了一项关于锂离子(Li)穿过明确界定的聚合物 - 硫银锗矿界面传输的原子尺度研究。我们给出了聚合物 - 硫银锗矿界面系统的力场,并对几个复合系统进行了分子动力学和增强采样模拟,包括聚环氧乙烷(PEO)/LiPSCl、氢化丁腈橡胶(HNBR)/LiPSCl以及聚偏氟乙烯 - 六氟丙烯(PVDF - HFP)/LiPSCl。对于此处考虑的材料,锂离子表现出对陶瓷材料的偏好,无机相和有机聚合物相中锂离子的自由能差超过13就表明了这一点。不同聚合物材料的锂离子相对自由能分布呈现相似形状,但其大小取决于聚合物与锂离子之间相互作用的强度:聚合物与锂离子之间的相互作用越强,无机和有机材料之间的自由能差越小。界面的影响在大约1.5纳米的范围内能被感受到,在此之后聚合物中锂离子的行为与本体中的行为相当。在界面附近,锂离子传输主要平行于界面平面发生,并且在界面本身附近离子迁移率相当慢,这与陶瓷材料附近聚合物链段迁移率降低相一致。这些发现为复合系统中的离子络合和传输机制提供了见解,并将有助于改进固态电解质系统的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895a/11403566/85d1119ad35d/am4c07440_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验