Brewitz Lennart, Nakashima Yu, Schofield Christopher J
Chemistry Research Laboratory, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
Chem Sci. 2020 Dec 7;12(4):1327-1342. doi: 10.1039/d0sc04301j.
2-Oxoglutarate (2OG) is involved in biological processes including oxidations catalyzed by 2OG oxygenases for which it is a cosubstrate. Eukaryotic 2OG oxygenases have roles in collagen biosynthesis, lipid metabolism, DNA/RNA modification, transcriptional regulation, and the hypoxic response. Aspartate/asparagine-β-hydroxylase (AspH) is a human 2OG oxygenase catalyzing post-translational hydroxylation of Asp/Asn-residues in epidermal growth factor-like domains (EGFDs) in the endoplasmic reticulum. AspH is of chemical interest, because its Fe(ii) cofactor is complexed by two rather than the typical three residues. AspH is upregulated in hypoxia and is a prognostic marker on the surface of cancer cells. We describe studies on how derivatives of its natural 2OG cosubstrate modulate AspH activity. An efficient synthesis of C3- and/or C4-substituted 2OG derivatives, proceeding cyanosulfur ylid intermediates, is reported. Mass spectrometry-based AspH assays with >30 2OG derivatives reveal that some efficiently inhibit AspH competing with 2OG as evidenced by crystallographic and solution analyses. Other 2OG derivatives can substitute for 2OG enabling substrate hydroxylation. The results show that subtle changes, methyl- to ethyl-substitution, can significantly alter the balance between catalysis and inhibition. 3-Methyl-2OG, a natural product present in human nutrition, was the most efficient alternative cosubstrate identified; crystallographic analyses reveal the binding mode of ()-3-methyl-2OG and other 2OG derivatives to AspH and inform on the balance between turnover and inhibition. The results will enable the use of 2OG derivatives as mechanistic probes for other 2OG utilizing enzymes and suggest 2-oxoacids other than 2OG may be employed by some 2OG oxygenases .
2-氧代戊二酸(2OG)参与多种生物过程,包括由2OG加氧酶催化的氧化反应,它作为这些反应的共底物。真核生物的2OG加氧酶在胶原蛋白生物合成、脂质代谢、DNA/RNA修饰、转录调控以及缺氧反应中发挥作用。天冬氨酸/天冬酰胺-β-羟化酶(AspH)是一种人类2OG加氧酶,可催化内质网中表皮生长因子样结构域(EGFDs)中天冬氨酸/天冬酰胺残基的翻译后羟基化。AspH在化学领域具有重要意义,因为其亚铁(Fe(ii))辅因子与两个而非典型的三个残基络合。AspH在缺氧状态下上调,是癌细胞表面的一个预后标志物。我们描述了关于其天然2OG共底物的衍生物如何调节AspH活性的研究。报道了一种通过氰基硫叶立德中间体高效合成C3和/或C4取代的2OG衍生物的方法。基于质谱的对30多种2OG衍生物的AspH检测表明,一些衍生物能有效抑制AspH,通过晶体学和溶液分析证明它们与2OG竞争。其他2OG衍生物可以替代2OG实现底物羟基化。结果表明,从甲基到乙基的细微取代变化可显著改变催化与抑制之间的平衡。3-甲基-2OG是人类营养中存在的一种天然产物,是已鉴定出的最有效的替代共底物;晶体学分析揭示了()-3-甲基-2OG和其他2OG衍生物与AspH的结合模式,并说明了周转与抑制之间的平衡。这些结果将使2OG衍生物能够用作其他利用2OG的酶的机制探针,并表明除2OG之外的2-氧代酸可能被一些2OG加氧酶所利用。