Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
Inorganic Chemistry Laboratory, Department of Chemistry, South Parks Road, Oxford, OX1 3QR, UK.
Sci Rep. 2024 Oct 30;14(1):26162. doi: 10.1038/s41598-024-75761-y.
Hypoxia inducible transcription factors (HIFs) mediate the hypoxic response in metazoans. When sufficient O is present, Fe(II)/2-oxoglutarate (2OG)-dependent oxygenases (human PHD1-3) promote HIFα degradation via prolyl-hydroxylation. We report crystallographic, spectroscopic, and biochemical characterization of stable and inactive PHD2.Fe(III).2OG complexes. Aerobic incubation of PHD2 with Fe(II) and 2OG enables formation of PHD2.Fe(III).2OG complexes which bind HIF1-2α to give inactive PHD2.Fe(III).2OG.HIF1-2α complexes. The Fe(III) oxidation state in the inactive complexes was shown by EPR spectroscopy. L-Ascorbate hinders formation of the PHD2.Fe(III).2OG.(+/-HIFα) complexes and slowly regenerates them to give the catalytically active PHD2.Fe(II).2OG complex. Crystallographic comparison of the PHD2.Fe(III).2OG.HIF2α complex with the analogous anaerobic Fe(II) complex reveals near identical structures. Exposure of the anaerobic PHD2.Fe(II).2OG.HIF2α crystals to O enables in crystallo hydroxylation. The resulting PHD2.product structure, manifests conformational changes compared to the substrate structures. The results have implications for the role of the PHDs in hypoxia sensing and open new opportunities for inhibition of the PHDs and other 2OG dependent oxygenases by promoting formation of stable Fe(III) complexes.
缺氧诱导转录因子 (HIFs) 在后生动物中介导缺氧反应。当有足够的 O 存在时,Fe(II)/2-酮戊二酸 (2OG)-依赖性氧合酶(人类 PHD1-3)通过脯氨酰羟化促进 HIFα 降解。我们报告了稳定和无活性 PHD2.Fe(III).2OG 复合物的晶体学、光谱学和生物化学表征。在有氧条件下,PHD2 与 Fe(II) 和 2OG 孵育可形成 PHD2.Fe(III).2OG 复合物,该复合物结合 HIF1-2α 形成无活性 PHD2.Fe(III).2OG.HIF1-2α 复合物。无活性复合物中的 Fe(III) 氧化态通过 EPR 光谱证明。L-抗坏血酸阻碍 PHD2.Fe(III).2OG.(+/-HIFα) 复合物的形成,并缓慢将其再生为具有催化活性的 PHD2.Fe(II).2OG 复合物。与类似的厌氧 Fe(II) 复合物的 PHD2.Fe(III).2OG.HIF2α 复合物的晶体学比较显示出几乎相同的结构。将厌氧 PHD2.Fe(II).2OG.HIF2α 晶体暴露于 O 可在晶体中进行羟化。与底物结构相比,所得 PHD2.产物结构表现出构象变化。结果对 PHDs 在缺氧感应中的作用具有启示意义,并为通过促进稳定 Fe(III) 复合物的形成来抑制 PHDs 和其他 2OG 依赖性氧合酶开辟了新的机会。