Pal Shrinwantu, Nozaki Kyoko, Vedernikov Andrei N, Love Jennifer A
Department of Chemistry and Biotechnology, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
Department of Chemistry and Biochemistry, The University of Maryland College Park Maryland 20742 USA.
Chem Sci. 2021 Jan 5;12(8):2960-2969. doi: 10.1039/d0sc06518h.
Di(2-pyridyl)ketone dimethylplatinum(ii), (dpk)Pt(CH), reacts with CDOD at 25 °C to undergo complete deuteration of Pt-CH fragments in ∼5 h without loss of methane to form (dpk)Pt(CD) in virtually quantitative yield. The deuteration can be reversed by dissolution in CHOH or CDOH. Kinetic analysis and isotope effects, together with support from density functional theory calculations indicate a metal-ligand cooperative mechanism wherein DPK enables Pt-CH deuteration by allowing non-rate-limiting protonation of Pt by CDOD. In contrast, other model di(2-pyridyl) ligands enable rate-limiting protonation of Pt, resulting in non-rate-limiting C-H(D) reductive coupling. Owing to its electron-poor nature, following complete deuteration, DPK can be dissociated from the Pt-centre, furnishing [(CD)Pt(μ-SMe)] as the perdeutero analogue of [(CH)Pt(μ-SMe)], a commonly used Pt-precursor.
二(2-吡啶基)酮二甲基铂(II),(dpk)Pt(CH),在25°C下与CDOD反应,约5小时内Pt-CH片段完全氘化,且无甲烷损失,几乎以定量产率形成(dpk)Pt(CD)。通过溶解在CHOH或CDOH中可使氘化逆转。动力学分析和同位素效应,以及密度泛函理论计算的支持表明,这是一种金属-配体协同机制,其中DPK通过允许CDOD对Pt进行非限速质子化来实现Pt-CH的氘化。相比之下,其他模型二(2-吡啶基)配体导致Pt的限速质子化,从而产生非限速的C-H(D)还原偶联。由于其电子贫化性质,完全氘化后,DPK可从Pt中心解离,生成[(CD)Pt(μ-SMe)],作为常用Pt前体[(CH)Pt(μ-SMe)]的全氘类似物。