Yu Zhen-Qiang, Li Xiaodong, Wan Wei, Li Xin-Shun, Fu Kuo, Wu Yue, Li Alexander D Q
College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518073 China
Department of Chemistry, Washington State University Pullman WA 99164 USA
Chem Sci. 2021 Jan 26;12(9):3146-3151. doi: 10.1039/d0sc06838a.
Balancing the rigidity of a π-conjugated structure for strong emission and the flexibility of liquid crystals for self-assembly is the key to realizing highly emissive liquid crystals (HELCs). Here we show that (1) integrating organization-induced emission into dual molecular cooperatively-assembled liquid crystals, (2) amplifying mesogens, and (3) elongating the spacer linking the emitter and the mesogen create advanced materials with desired thermal-optical properties. Impressively, assembling the fluorescent acceptor Nile red into its host donor designed according to the aforementioned strategies results in a temperature-controlled Förster resonance energy transfer (FRET) system. Indeed, FRET exhibits strong S-curve dependence as temperature sweeps through the liquid crystal phase transformation. Such thermochromic materials, suitable for dynamic thermo-optical sensing and modulation, are anticipated to unlock new and smart approaches for controlling and directing light in stimuli-responsive devices.
平衡用于强发射的π共轭结构的刚性和用于自组装的液晶的柔韧性是实现高发射液晶(HELCs)的关键。在此我们表明:(1)将组织诱导发射整合到双分子协同组装液晶中;(2)放大液晶基元;(3)延长连接发射体和液晶基元的间隔基团,可制备出具有所需热光性质的先进材料。令人印象深刻的是,根据上述策略将荧光受体尼罗红组装到其主体供体中,可形成一个温度可控型Förster共振能量转移(FRET)体系。实际上,当温度扫过液晶相变过程时,FRET呈现出强烈的S曲线依赖性。这类适用于动态热光传感与调制的热致变色材料,有望为刺激响应器件中控制和引导光开辟全新的智能方法。