Knöller Julius A, Müller Franziska, Matulaitis Tomas, Dos Santos John M, Gupta Abhishek Kumar, Zysman-Colman Eli, Laschat Sabine
Institute of Organic Chemistry, University of Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews St Andrews, Fife KY16 9ST UK
Chem Sci. 2024 Oct 11;15(43):18022-30. doi: 10.1039/d4sc04429k.
Creating (room temperature) liquid crystalline TADF materials that retain the photophysical properties of the monomolecular TADF emitters remains a formidable challenge. The strong intramolecular interactions required for formation of a liquid crystal usually adversely affect the photophysical properties and balancing them is not yet possible. In this work, we present a novel host-guest approach enabling unperturbed, narrowband emission from an MR-TADF emissive core from strongly aggregated columnar hexagonal (Col) liquid crystals. By modifying the DOBNA scaffold with mesogenic groups bearing alkoxy chains of different lengths, we created a library of Col liquid crystals featuring phase ranges >100 K and room temperature mesomorphism. Expectedly, these exhibit broad excimer emission from their neat films, so we exploited their high singlet (S ∼2.9 eV) and triplet (T ∼2.5 eV) energies by doping them with the MR-TADF guest BCzBN. Upon excitation of the host, efficient Förster Resonance Energy Transfer (FRET) resulted in almost exclusive emission from BCzBN. The ability of the liquid crystallinity of the host to not be adversely affected by the presence of BCzBN is demonstrated as is the localization of the guest molecules within the aliphatic chain network of the host, resulting in extremely narrowband emission (FWHM = 14-15 nm). With this work we demonstrate a strategy for the self-assembly of materials with previously mutually incompatible properties in emissive liquid crystalline systems: strong aggregation in Col mesophases, and narrowband emission from a MR-TADF core.
制备(室温下)保持单分子热活化延迟荧光(TADF)发光体光物理性质的液晶TADF材料仍然是一项艰巨的挑战。形成液晶所需的强分子内相互作用通常会对光物理性质产生不利影响,并且目前还无法实现两者的平衡。在这项工作中,我们提出了一种新颖的主客体方法,能够使来自强聚集的柱状六方(Col)液晶中的MR-TADF发射核实现不受干扰的窄带发射。通过用带有不同长度烷氧基链的介晶基团修饰DOBNA支架,我们创建了一系列Col液晶,其相范围>100 K且具有室温介晶性。不出所料,这些液晶在其纯膜中表现出宽泛的激基缔合物发射,因此我们通过用MR-TADF客体BCzBN对其进行掺杂,利用了它们较高的单重态(S ∼2.9 eV)和三重态(T ∼2.5 eV)能量。在主体被激发后,高效的Förster共振能量转移(FRET)导致几乎完全由BCzBN发射。证明了主体的液晶性不会受到BCzBN存在的不利影响,同时也证明了客体分子在主体脂肪链网络中的定位,从而产生极窄带发射(半高宽 = 14 - 15 nm)。通过这项工作,我们展示了一种在发射性液晶体系中自组装具有先前相互不兼容性质的材料的策略:在Col中间相中形成强聚集,以及从MR-TADF核心产生窄带发射。