用于模拟经颅磁共振成像引导聚焦超声热消融的逐元素方法。

Elementwise approach for simulating transcranial MRI-guided focused ultrasound thermal ablation.

作者信息

McDannold Nathan, White P Jason, Cosgrove Rees

机构信息

Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.

Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Phys Rev Res. 2019 Dec;1(3). doi: 10.1103/physrevresearch.1.033205. Epub 2019 Dec 26.

Abstract

This work explored an elementwise approach to model transcranial MRI-guided focused ultrasound (TcMRgFUS) thermal ablation, a noninvasive approach to neurosurgery. Each element of the phased array transducer was simulated individually and could be simultaneously loaded into computer memory, allowing for rapid (~2.5 s) calculation of the pressure field for different phase offsets used for beam steering and aberration correction. We simulated the pressure distribution for 431 sonications in 32 patients, applied the phase and magnitude values used during treatment, and estimated the resulting temperature rise. We systematically varied the relationship between CT (computerized tomography)-derived skull density and the acoustic attenuation and sound speed to obtain the best agreement between the predictions and MR temperature imaging (MRTI). The optimization was validated with simulations of 396 sonications from 40 additional treatments. After optimization, the predicted and measured heating agreed well ( : 0.74 patients 1-32; 0.71 patients 33-72). The dimensions and obliquity of the heating in the simulated temperature maps were correlated with the MRTI ( : 0.62, 0.74, respectively), but the measured heating was more spatially diffuse. The energy needed to achieve ablation varied by an order of magnitude (3.3-36.1 kJ). While this elementwise approach required more computation time up front (the combined simulation matrices were approximately 4.6 times higher than a single large simulation), it could be performed in parallel on a computing cluster. It allows for rapid calculation of the three-dimensional heating at the focus for different phase and magnitude values on the array. We also show how this approach can be used to optimize the relationship between CT-derived skull density and acoustic properties. While the relationships found here need further validation in a larger patient population, these results demonstrate the promise of this approach to model TcMRgFUS.

摘要

本研究探索了一种逐元素方法来模拟经颅磁共振成像引导聚焦超声(TcMRgFUS)热消融,这是一种神经外科的非侵入性方法。相控阵换能器的每个元素都单独进行了模拟,并且可以同时加载到计算机内存中,从而能够快速(约2.5秒)计算用于波束转向和像差校正的不同相位偏移的压力场。我们模拟了32例患者431次超声治疗的压力分布,应用了治疗期间使用的相位和幅度值,并估计了由此产生的温度升高。我们系统地改变了计算机断层扫描(CT)得出的颅骨密度与声衰减和声速之间的关系,以在预测结果与磁共振温度成像(MRTI)之间获得最佳一致性。通过对另外40次治疗的396次超声治疗模拟对优化结果进行了验证。优化后,预测的加热情况与测量结果吻合良好(患者1 - 32:相关系数为0.74;患者33 - 72:相关系数为0.71)。模拟温度图中加热区域的尺寸和倾斜度与MRTI相关(相关系数分别为0.62和0.74),但测量得到的加热区域在空间上更为分散。实现消融所需的能量相差一个数量级(3.3 - 36.1千焦)。虽然这种逐元素方法前期需要更多的计算时间(组合模拟矩阵比单个大型模拟大约高4.6倍),但它可以在计算集群上并行执行。它允许针对阵列上不同的相位和幅度值快速计算焦点处的三维加热情况。我们还展示了如何使用这种方法来优化CT得出的颅骨密度与声学特性之间的关系。虽然此处发现的关系需要在更大的患者群体中进一步验证,但这些结果证明了这种模拟TcMRgFUS方法的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3b/8218657/636049d0ec73/nihms-1593991-f0001.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索