Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17, Ferrara, 44121, Italy.
Department of Química Inorgánica e Ingeniería Química, Instituto de Química Fina y Nanoquímica, University of Córdoba, 14071, Córdoba, Spain.
ChemSusChem. 2021 Aug 23;14(16):3333-3343. doi: 10.1002/cssc.202101069. Epub 2021 Jul 16.
A full lithium-ion-sulfur cell with a remarkable cycle life was achieved by combining an environmentally sustainable biomass-derived sulfur-carbon cathode and a pre-lithiated silicon oxide anode. X-ray diffraction, Raman spectroscopy, energy dispersive spectroscopy, and thermogravimetry of the cathode evidenced the disordered nature of the carbon matrix in which sulfur was uniformly distributed with a weight content as high as 75 %, while scanning and transmission electron microscopy revealed the micrometric morphology of the composite. The sulfur-carbon electrode in the lithium half-cell exhibited a maximum capacity higher than 1200 mAh g , reversible electrochemical process, limited electrode/electrolyte interphase resistance, and a rate capability up to C/2. The material showed a capacity decay of about 40 % with respect to the steady-state value over 100 cycles, likely due to the reaction with the lithium metal of dissolved polysulfides or impurities including P detected in the carbon precursor. Therefore, the replacement of the lithium metal with a less challenging anode was suggested, and the sulfur-carbon composite was subsequently investigated in the full lithium-ion-sulfur battery employing a Li-alloying silicon oxide anode. The full-cell revealed an initial capacity as high as 1200 mAh g , a retention increased to more than 79 % for 100 galvanostatic cycles, and 56 % over 500 cycles. The data reported herein well indicated the reliability of energy storage devices with extended cycle life employing high-energy, green, and safe electrode materials.
通过将环境可持续的生物质衍生硫碳阴极和预锂化氧化硅阳极相结合,实现了具有出色循环寿命的全锂离子硫电池。阴极的 X 射线衍射、拉曼光谱、能量色散光谱和热重分析证明了碳基质的无序性质,其中硫均匀分布,重量含量高达 75%,而扫描和透射电子显微镜则揭示了复合材料的微观形态。锂半电池中的硫碳电极表现出高于 1200 mAh g 的最大容量、可逆电化学过程、有限的电极/电解质界面电阻和高达 C/2 的倍率性能。该材料在 100 次循环中相对于稳定状态值的容量衰减约为 40%,这可能是由于与溶解的多硫化物或在碳前体中检测到的包括 P 的杂质与锂金属的反应所致。因此,建议用更具挑战性的阳极代替锂金属,随后在采用 Li 合金化氧化硅阳极的全锂离子硫电池中研究了硫碳复合材料。全电池显示出高达 1200 mAh g 的初始容量、在 100 次恒流循环中增加到超过 79%的保留率以及在 500 次循环中增加到 56%的保留率。本文报道的数据表明,采用高能量、绿色和安全的电极材料,具有延长循环寿命的储能装置具有可靠性。