David.D.Parrish, LLC, Boulder, CO, USA.
Air Quality Research Center, University of California, Davis, CA, USA.
J Air Waste Manag Assoc. 2021 Nov;71(11):1397-1406. doi: 10.1080/10962247.2021.1945706. Epub 2021 Jul 27.
Quantification of the magnitude and long-term changes in ozone concentrations transported into the U.S. is important for effective air quality policy development. We synthesize multiple published trend analyses of western U.S. baseline ozone, and show that all results are consistent with an overall, non-linear change - a rapid increase (5 ppb/decade) during the 1980s that slowed in the 1990s, maximized in the mid-2000s, and was followed by a slow decrease (1 ppb/decade) thereafter. This non-linear change accounts for ~2/3 of the variance in 28 published linear trend analyses; we attribute the other 1/3 of the variance to unquantified autocorrelation in the analyzed data sets that result primarily from meteorologically driven interannual ozone variability. Recent systematic changes in baseline ozone on the U.S. West Coast have been relatively small - the standard deviation of the 2-year means over the 1990-2017 period is 1.5 ppb. International efforts to reduce anthropogenic precursor emissions from all northern mid-latitude sources could possibly reduce baseline ozone concentrations, thereby improving U.S. ozone air quality.: Ozone is an air pollutant with significant human and ecological health impacts. Air masses transported into the western U.S. from over the Pacific Ocean carry ozone concentrations that are, on average, a large fraction of the U.S. health standard. The US EPA policy assessment conducted for the recent review of the ozone National Ambient Air Quality Standard (NAAQS) found that 2016 regional average MDA8 ozone concentrations in the western US maximized in summer at ~52 ppb and that ~40 ppb of that maximum was contributed by ozone of natural and transported anthropogenic contributions. Thus, quantifying these trans-boundary background ozone concentrations has been identified as an important issue for a complete understanding of US air quality. Published analyses of temporal trends of these transported ozone concentrations vary widely, from early reports of increases to more recent reports of decreases. We show that the long-term ozone changes are nonlinear, with substantial concentration increases (as large as ~5 ppb/decade) before the mid-2000s when a maximum is reached, followed by a small decrease of ~1 ppb/decade thereafter. Superimposed on the overall changes is significant interannual variability that makes accurate determination of systematic trends over decade-scale time periods uncertain. The end of the previously increasing trends, and the recent decrease in transported ozone concentrations, is a good news for U.S. air quality, as it eases the difficulty of achieving the ozone air quality standard.
量化传输到美国的臭氧浓度的幅度和长期变化对于制定有效的空气质量政策非常重要。我们综合了多项已发表的美国西部基本臭氧趋势分析报告,结果表明所有结果都与整体非线性变化一致——20 世纪 80 年代快速增加(约 5 ppb/decade),20 世纪 90 年代增速放缓,21 世纪 00 年代中期达到最大值,此后缓慢减少(约 1 ppb/decade)。这种非线性变化解释了 28 项已发表线性趋势分析中约 2/3 的方差;我们将剩余的 1/3 归因于分析数据集无法量化的自相关,这主要是由气象驱动的臭氧年际变化造成的。美国西海岸基本臭氧最近的系统变化相对较小——20 世纪 90 年代至 2017 年期间的 2 年平均值的标准差为 1.5 ppb。减少来自所有北中纬度地区的人为前体排放的国际努力可能会降低基本臭氧浓度,从而改善美国的臭氧空气质量。:臭氧是一种对人类和生态健康有重大影响的空气污染物。从太平洋上空传输到美国西部的空气团携带的臭氧浓度,平均占美国健康标准的很大一部分。美国环保署在最近对臭氧国家环境空气质量标准(NAAQS)进行的政策评估中发现,2016 年美国西部的区域平均 MDA8 臭氧浓度在夏季达到最大值,约为 52 ppb,其中约 40 ppb 来自自然和人为传输的臭氧。因此,量化这些跨境背景臭氧浓度已被确定为全面了解美国空气质量的一个重要问题。已发表的这些传输臭氧浓度时间趋势分析报告差异很大,从早期的增加报告到最近的减少报告。我们表明,长期臭氧变化是非线性的,在 21 世纪中期达到最大值之前,浓度有大幅增加(高达约 5 ppb/decade),此后略有减少(约 1 ppb/decade)。叠加在总体变化之上的是显著的年际可变性,这使得准确确定十年时间尺度上的系统趋势变得不确定。传输臭氧浓度先前增加趋势的结束和最近的减少对美国空气质量来说是个好消息,因为这降低了实现臭氧空气质量标准的难度。