Univ. Bordeaux, Inserm UMR 1219, Bordeaux Population Health Research Center, team Lifelong Exposure, Health and Aging, Bordeaux, France; DRUGS-SAFE National Platform of Pharmacoepidemiology, Bordeaux, France.
DRUGS-SAFE National Platform of Pharmacoepidemiology, Bordeaux, France; Univ. Bordeaux, Inserm UMR 1219, Bordeaux Population Health Research Center, team Pharmacoepidemiology, Bordeaux, France; Bordeaux University Hospital, Public Health department, Medical pharmacoepidemiology, Bordeaux, France.
J Clin Epidemiol. 2021 Nov;139:297-306. doi: 10.1016/j.jclinepi.2021.06.014. Epub 2021 Jun 21.
We aimed to develop an algorithm for the identification of basic Activities of Daily Living (ADL)-dependency in health insurance databases.
We used the AMI (Aging Multidisciplinary Investigation) population-based cohort including both individual face-to-face assessment of ADL-dependency and merged health insurance data. The health insurance factors associated with ADL-dependency were identified using a LASSO logistic regression model in 1000 bootstrap samples. An external validation on a 1/97 representative sample of the French Health Insurance general population of Affiliates has been performed.
Among 995 participants of the AMI cohort aged ≥ 65y, 114 (11.5%) were ADL-dependent according to neuropsychologists individual assessments. The final algorithm developed included: age, sex, four drug classes (dopaminergic antiparkinson drugs, antidepressants, antidiabetic agents, lipid modifying agents), three type of medical devices (medical bed, patient lifter, incontinence equipment), four medical acts (GP's consultations at home, daily and non-daily nursing at home, transport by ambulance) and four long-term diseases (stroke, heart failure, coronary heart disease, Alzheimer and other dementia). Applying this algorithm, the estimated prevalence of ADL-dependency was 12.3% in AMI and 9.5% in the validation sample.
This study proposes a useful algorithm to identify ADL-dependency in the health insurance data.
我们旨在开发一种用于识别健康保险数据库中基本日常生活活动(ADL)依赖的算法。
我们使用 AMI(老龄化多学科研究)基于人群的队列,包括 ADL 依赖的个体面对面评估和合并的健康保险数据。使用 LASSO 逻辑回归模型在 1000 个 bootstrap 样本中确定与 ADL 依赖相关的健康保险因素。在法国健康保险一般人群附属机构的 1/97 代表性样本上进行了外部验证。
在 AMI 队列中,年龄≥65 岁的 995 名参与者中,根据神经心理学家的个体评估,有 114 人(11.5%)ADL 依赖。开发的最终算法包括:年龄、性别、四类药物(多巴胺抗帕金森药物、抗抑郁药、抗糖尿病药物、调脂药物)、三种医疗设备(医疗床、病人升降机、失禁设备)、四项医疗行为(家庭医生就诊、家庭日常和非日常护理、救护车转运)和四种长期疾病(中风、心力衰竭、冠心病、阿尔茨海默病和其他痴呆症)。应用该算法,AMI 中的 ADL 依赖估计患病率为 12.3%,验证样本中的患病率为 9.5%。
本研究提出了一种在健康保险数据中识别 ADL 依赖的有用算法。