Suppr超能文献

在健康管理数据库中识别糖尿病病例:一项基于大型法国队列的验证研究。

Identifying diabetes cases in health administrative databases: a validation study based on a large French cohort.

机构信息

Santé publique France (SpF), F-94415, Saint-Maurice, France.

Department of Endocrinology-Diabetology-Nutrition, AP-HP, Jean Verdier Hospital, Paris 13 University, Sorbonne Paris Cité, CRNH-IdF, CINFO, Bondy, France.

出版信息

Int J Public Health. 2019 Apr;64(3):441-450. doi: 10.1007/s00038-018-1186-3. Epub 2018 Dec 4.

Abstract

OBJECTIVES

In the French national health insurance information system (SNDS) three diabetes case definition algorithms are applied to identify diabetic patients. The objective of this study was to validate those using data from a large cohort.

METHODS

The CONSTANCES cohort (Cohorte des consultants des Centres d'examens de santé) comprises a randomly selected sample of adults living in France. Between 2012 and 2014, data from 45,739 participants recorded in a self-administrated questionnaire and in a medical examination were linked to the SNDS. Two gold standards were defined: known diabetes and pharmacologically treated diabetes. Sensitivity, specificity, positive and negative predictive values (PPV, NPV) and kappa coefficients (k) were estimated.

RESULTS

All three algorithms had specificities and NPV over 99%. Their sensitivities ranged from 73 to 77% in algorithm A, to 86 and 97% in algorithm B and to 93 and 99% in algorithm C, when identifying known and pharmacologically treated diabetes, respectively. Algorithm C had the highest k when using known diabetes as the gold standard (0.95). Algorithm B had the highest k (0.98) when testing for pharmacologically treated diabetes.

CONCLUSIONS

The SNDS is an excellent source for diabetes surveillance and studies on diabetes since the case definition algorithms applied have very good test performances.

摘要

目的

在法国国家健康保险信息系统(SNDS)中,应用了三种糖尿病病例定义算法来识别糖尿病患者。本研究的目的是使用大型队列数据验证这些算法。

方法

CONSTANCES 队列(健康检查中心顾问队列)包括居住在法国的成年人的随机样本。在 2012 年至 2014 年期间,从 45739 名参与者的自我管理问卷和医学检查中记录的数据与 SNDS 相关联。定义了两个金标准:已知糖尿病和药物治疗糖尿病。估计了敏感性、特异性、阳性和阴性预测值(PPV、NPV)和kappa 系数(k)。

结果

所有三种算法的特异性和 NPV 均超过 99%。当识别已知和药物治疗糖尿病时,算法 A 的敏感性范围为 73%至 77%,算法 B 为 86%和 97%,算法 C 为 93%和 99%。当使用已知糖尿病作为金标准时,算法 C 的 k 值最高(0.95)。当测试药物治疗糖尿病时,算法 B 的 k 值最高(0.98)。

结论

SNDS 是糖尿病监测和糖尿病研究的极好来源,因为应用的病例定义算法具有非常好的测试性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验