Suppr超能文献

单心室患者心肺恶化的自动预测。

Automated Prediction of Cardiorespiratory Deterioration in Patients With Single Ventricle.

机构信息

Department of Pediatrics-Cardiology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA.

Department of Pediatrics-Cardiology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA.

出版信息

J Am Coll Cardiol. 2021 Jun 29;77(25):3184-3192. doi: 10.1016/j.jacc.2021.04.072.

Abstract

BACKGROUND

Patients with single-ventricle physiology have a significant risk of cardiorespiratory deterioration between their first and second stage palliation surgeries.

OBJECTIVES

The objective of this study is to develop and validate a real-time computer algorithm that can automatically recognize physiological precursors of cardiorespiratory deterioration in children with single-ventricle physiology during their interstage hospitalization.

METHODS

A retrospective study was conducted from prospectively collected physiological data of subjects with single-ventricle physiology. Deterioration events were defined as a cardiac arrest requiring cardiopulmonary resuscitation or an unplanned intubation. Physiological metrics were derived from the electrocardiogram (heart rate, heart rate variability, ST-segment elevation, and ST-segment variability) and the photoplethysmogram (peripheral oxygen saturation and pleth variability index). A logistic regression model was trained to separate the physiological dynamics of the pre-deterioration phase from all other data generated by study subjects. Data were split 50/50 into model training and validation sets to enable independent model validation.

RESULTS

Our cohort consisted of 238 subjects admitted to the cardiac intensive care unit and stepdown units of Texas Children's Hospital over a period of 6 years. Approximately 300,000 h of high-resolution physiological waveform and vital sign data were collected using the Sickbay software platform (Medical Informatics Corp., Houston, Texas). A total of 112 cardiorespiratory deterioration events were observed. Seventy-two of the subjects experienced at least 1 deterioration event. The risk index metric generated by our optimized algorithm was found to be both sensitive and specific for detecting impending events 1 to 2 h in advance of overt extremis (receiver-operating characteristic curve area: 0.958; 95% confidence interval: 0.950 to 0.965).

CONCLUSIONS

Our algorithm can provide 1 to 2 h of advanced warning for 62% of all cardiorespiratory deterioration events in children with single-ventricle physiology during their interstage period, with only 1 alarm being generated at the bedside per patient per day.

摘要

背景

患有单心室生理学的患者在其第一阶段和第二阶段姑息手术之间存在重大的心肺恶化风险。

目的

本研究的目的是开发和验证一种实时计算机算法,该算法可以自动识别单心室生理患儿在其间期住院期间心肺恶化的生理前兆。

方法

对单心室生理患者前瞻性采集的生理数据进行回顾性研究。恶化事件定义为需要心肺复苏的心脏骤停或计划外插管。生理指标源自心电图(心率、心率变异性、ST 段抬高和 ST 段变异性)和光体积描记图(外周血氧饱和度和容积变异指数)。使用逻辑回归模型将恶化前阶段的生理动态与研究对象生成的所有其他数据分开。数据以 50/50 的比例分为模型训练集和验证集,以实现独立的模型验证。

结果

我们的队列包括在德克萨斯儿童医院心脏重症监护病房和病房单元住院的 238 名患者,研究时间为 6 年。使用 Sickbay 软件平台(Medical Informatics Corp.,休斯顿,德克萨斯州)共采集了约 30 万小时的高分辨率生理波形和生命体征数据。共观察到 112 次心肺恶化事件。72 名患者经历了至少 1 次恶化事件。我们优化后的算法生成的风险指数指标在检测明显恶化事件前 1 至 2 小时内具有敏感性和特异性(受试者工作特征曲线下面积:0.958;95%置信区间:0.950 至 0.965)。

结论

我们的算法可以为患有单心室生理学的儿童在间期中的 62%的所有心肺恶化事件提供 1 至 2 小时的提前预警,每个患者每天仅在床边生成 1 个警报。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f26b/8091451/10359ace81db/fx1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验