Suppr超能文献

支气管肺发育不良的预测分析:过去、现在与未来。

Predictive analytics in bronchopulmonary dysplasia: past, present, and future.

作者信息

McOmber Bryan G, Moreira Alvaro G, Kirkman Kelsey, Acosta Sebastian, Rusin Craig, Shivanna Binoy

机构信息

Division of Neonatology, Department of Pediatrics, University Hospital, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.

Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States.

出版信息

Front Pediatr. 2024 Nov 20;12:1483940. doi: 10.3389/fped.2024.1483940. eCollection 2024.

Abstract

Bronchopulmonary dysplasia (BPD) remains a significant complication of prematurity, impacting approximately 18,000 infants annually in the United States. Advances in neonatal care have not reduced BPD, and its management is challenged by the rising survival of extremely premature infants and the variability in clinical practices. Leveraging statistical and machine learning techniques, predictive analytics can enhance BPD management by utilizing large clinical datasets to predict individual patient outcomes. This review explores the foundations and applications of predictive analytics in the context of BPD, examining commonly used data sources, modeling techniques, and metrics for model evaluation. We also highlight bioinformatics' potential role in understanding BPD's molecular basis and discuss case studies demonstrating the use of machine learning models for risk prediction and prognosis in neonates. Challenges such as data bias, model complexity, and ethical considerations are outlined, along with strategies to address these issues. Future directions for advancing the integration of predictive analytics into clinical practice include improving model interpretability, expanding data sharing and interoperability, and aligning predictive models with precision medicine goals. By overcoming current challenges, predictive analytics holds promise for transforming neonatal care and providing personalized interventions for infants at risk of BPD.

摘要

支气管肺发育不良(BPD)仍然是早产的一个重要并发症,在美国每年影响约18000名婴儿。新生儿护理的进步并未降低BPD的发生率,而且极端早产儿存活率的上升以及临床实践的差异给BPD的管理带来了挑战。利用统计和机器学习技术,预测分析可以通过利用大型临床数据集来预测个体患者的预后,从而加强BPD的管理。本综述探讨了预测分析在BPD背景下的基础和应用,研究了常用的数据来源、建模技术以及模型评估指标。我们还强调了生物信息学在理解BPD分子基础方面的潜在作用,并讨论了展示使用机器学习模型进行新生儿风险预测和预后的案例研究。概述了数据偏差、模型复杂性和伦理考量等挑战,以及解决这些问题的策略。将预测分析整合到临床实践中的未来发展方向包括提高模型的可解释性、扩大数据共享和互操作性,以及使预测模型与精准医学目标保持一致。通过克服当前的挑战,预测分析有望改变新生儿护理,并为有BPD风险的婴儿提供个性化干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f380/11615574/56272a7576f9/fped-12-1483940-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验