Suppr超能文献

基于二腈的锂离子电池电解质中相互作用的分子动力学与新兴网络图谱

Molecular Dynamics and Emerging Network Graphs of Interactions in Dinitrile-Based Li-Ion Battery Electrolytes.

作者信息

Kartha Thejus R, Mallik Bhabani S

机构信息

Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India.

出版信息

J Phys Chem B. 2021 Jul 8;125(26):7231-7240. doi: 10.1021/acs.jpcb.1c04486. Epub 2021 Jun 25.

Abstract

Advancements in battery research have shown interesting formulations of battery electrolytes that have helped improve the efficiency of Li-ion batteries over the decades. However, the quest for a safer and affordable battery electrolyte still proceeds with more unique formulations reported in the literature regularly. The dinitriles, especially adiponitrile and glutaronitrile, have caught the attention of the research community as part of this quest. In this work, we performed molecular dynamics simulations of dinitrile electrolytes with lithium bistrifluorosulfonimide (LiTFSI) as the electrolyte salt at varying concentrations and temperatures. On analysis of our simulations, we find that the densities of the mixtures follow the same trend as that of experimental values. The solvation properties were explored using the radial distribution functions. The connectivity of the Li with the dinitrile molecules and anions is established for all of the electrolyte concentrations using network graphs. We observe that the electrolytes form highly networked structures as the concentration increases without being affected by the rise in temperature. The networking of ionic interactions was quantified by calculating the average degree of each graph. Ionic conductivity calculations were computed using three methods: Nernst-Einstein relation, correlated method, and current autocorrelation function. We report the importance of accounting for the correlated motion of ions while estimating the ionic conductivity. The correlated conductivity and current autocorrelation function calculations provide a satisfactory estimation of the ionic conductivity compared to the experimental values.

摘要

电池研究的进展表明,在过去几十年里,电池电解质出现了一些有趣的配方,有助于提高锂离子电池的效率。然而,对更安全、更经济实惠的电池电解质的探索仍在继续,文献中仍定期报道更多独特的配方。作为这一探索的一部分,二腈类化合物,尤其是己二腈和戊二腈,引起了研究界的关注。在这项工作中,我们以双三氟甲磺酰亚胺锂(LiTFSI)作为电解质盐,在不同浓度和温度下对二腈电解质进行了分子动力学模拟。通过对模拟结果的分析,我们发现混合物的密度与实验值遵循相同的趋势。利用径向分布函数研究了溶剂化性质。使用网络图确定了所有电解质浓度下锂与二腈分子和阴离子的连接性。我们观察到,随着浓度的增加,电解质形成高度网络化的结构,且不受温度升高的影响。通过计算每个图的平均度来量化离子相互作用的网络化程度。使用三种方法计算离子电导率:能斯特-爱因斯坦关系、关联方法和电流自相关函数。我们报告了在估计离子电导率时考虑离子相关运动的重要性。与实验值相比,关联电导率和电流自相关函数计算能够对离子电导率进行令人满意的估计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验