Suppr超能文献

具有混合非质子电解质(双三氟甲磺酰亚胺锂、环丁砜和N,N-二甲基乙酰胺)的锂氧电池中笼状动力学介导的高离子传输

Cage Dynamics-Mediated High Ionic Transport in Li-O Batteries with a Hybrid Aprotic Electrolyte: LiTFSI, Sulfolane, and ,-Dimethylacetamide.

作者信息

Mallik Bhabani S

机构信息

Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India.

出版信息

J Phys Chem B. 2023 Apr 6;127(13):2991-3000. doi: 10.1021/acs.jpcb.2c07829. Epub 2023 Mar 24.

Abstract

Mixed electrolytes perform better than single solvent electrolytes in aprotic lithium-O batteries in terms of stability and transportation. According to an experimental study, a mixed electrolyte consisting of dimethylacetamide (DMA)/sulfolane (TMS) with lithium bisfluorosulfonimide (LiTFSI) showed high ionic conductivity, oxygen solubility, remarkable stability, and better cycle life than only DMA-based or TMS-based electrolytes. In this work, we used classical molecular dynamics simulations to explore the structure and ionic dynamics of the DMA/TMS hybrid electrolytes at two compositions. We calculated radial, combined, and spatial distribution functions for the structural examination. These properties depict a minimal change in the electrolyte structure by increasing the DMA content in the electrolyte from 20 to 50% by volume. We used the diffusive regimes from mean square displacements for diffusion coefficient calculations. Ionic conductivities calculated using the Green-Kubo equation have an acceptable agreement with the experimental values, whereas the Nernst-Einstein relation is found insufficient to explain the ionic transport. The relatively lower value of the ion-cage lifetime of electrolyte components with 50% DMA shows their faster dynamics. Moreover, we present the new physical insight by focusing on ion-pair and ion-cage formation and their correlation with ionic conductivity. The atomic-level understanding through this work may assist in designing electrolytes for aprotic Li-O cells.

摘要

在非质子锂氧电池中,混合电解质在稳定性和传输方面比单一溶剂电解质表现更好。根据一项实验研究,由二甲基乙酰胺(DMA)/环丁砜(TMS)与双(氟磺酰)亚胺锂(LiTFSI)组成的混合电解质表现出高离子电导率、氧溶解度、显著的稳定性,并且循环寿命比仅基于DMA或TMS的电解质更好。在这项工作中,我们使用经典分子动力学模拟来探索两种组成的DMA/TMS混合电解质的结构和离子动力学。我们计算了径向、组合和空间分布函数用于结构检查。这些性质表明,通过将电解质中DMA的体积含量从20%增加到50%,电解质结构的变化最小。我们使用均方位移的扩散区域来计算扩散系数。使用格林-久保方程计算的离子电导率与实验值有可接受的一致性,而能斯特-爱因斯坦关系被发现不足以解释离子传输。DMA含量为50%的电解质组分的离子笼寿命相对较低,表明其动力学更快。此外,我们通过关注离子对和离子笼的形成及其与离子电导率的相关性,提出了新的物理见解。通过这项工作在原子水平上的理解可能有助于设计非质子锂氧电池的电解质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验