Brennan Ellen Kw, Jedrasiak-Cape Izabela, Kailasa Sameer, Rice Sharena P, Sudhakar Shyam Kumar, Ahmed Omar J
Department of Psychology, University of Michigan, Ann Arbor, United States.
Neuroscience Graduate Program, University of Michigan, Ann Arbor, United States.
Elife. 2021 Jun 25;10:e62207. doi: 10.7554/eLife.62207.
The granular retrosplenial cortex (RSG) is critical for both spatial and non-spatial behaviors, but the underlying neural codes remain poorly understood. Here, we use optogenetic circuit mapping in mice to reveal a double dissociation that allows parallel circuits in superficial RSG to process disparate inputs. The anterior thalamus and dorsal subiculum, sources of spatial information, strongly and selectively recruit small low-rheobase (LR) pyramidal cells in RSG. In contrast, neighboring regular-spiking (RS) cells are preferentially controlled by claustral and anterior cingulate inputs, sources of mostly non-spatial information. Precise sublaminar axonal and dendritic arborization within RSG layer 1, in particular, permits this parallel processing. Observed thalamocortical synaptic dynamics enable computational models of LR neurons to compute the speed of head rotation, despite receiving head direction inputs that do not explicitly encode speed. Thus, parallel input streams identify a distinct principal neuronal subtype ideally positioned to support spatial orientation computations in the RSG.
颗粒状 retrosplenial 皮质(RSG)对空间和非空间行为都至关重要,但其潜在的神经编码仍知之甚少。在这里,我们使用小鼠的光遗传学电路映射来揭示一种双重解离,使浅表 RSG 中的并行电路能够处理不同的输入。丘脑前核和背侧海马下脚作为空间信息的来源,强烈且选择性地募集 RSG 中的小低阈值(LR)锥体细胞。相比之下,相邻的常规放电(RS)细胞则优先受屏状核和前扣带回输入的控制,这些输入大多是非空间信息的来源。特别是,RSG 第 1 层内精确的亚层轴突和树突分支允许这种并行处理。观察到的丘脑皮质突触动力学使 LR 神经元的计算模型能够计算头部旋转速度,尽管接收到的头部方向输入并未明确编码速度。因此,并行输入流识别出一种独特的主要神经元亚型,其位置理想,能够支持 RSG 中的空间定向计算。