Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.
Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.
J Biol Chem. 2021 Jul;297(1):100908. doi: 10.1016/j.jbc.2021.100908. Epub 2021 Jun 24.
The cAMP response element-binding protein (CREB) is an important regulator of cell growth, metabolism, and synaptic plasticity. CREB is activated through phosphorylation of an evolutionarily conserved Ser residue (S133) within its intrinsically disordered kinase-inducible domain (KID). Phosphorylation of S133 in response to cAMP, Ca, and other stimuli triggers an association of the KID with the KID-interacting (KIX) domain of the CREB-binding protein (CBP), a histone acetyl transferase (HAT) that promotes transcriptional activation. Here we addressed the mechanisms of CREB attenuation following bursts in CREB phosphorylation. We show that phosphorylation of S133 is reversed by protein phosphatase 2A (PP2A), which is recruited to CREB through its B56 regulatory subunits. We found that a B56-binding site located at the carboxyl-terminal boundary of the KID (BS2) mediates high-affinity B56 binding, while a second binding site (BS1) located near the amino terminus of the KID mediates low affinity binding enhanced by phosphorylation of adjacent casein kinase (CK) phosphosites. Mutations that diminished B56 binding to BS2 elevated both basal and stimulus-induced phosphorylation of S133, increased CBP interaction with CREB, and potentiated the expression of CREB-dependent reporter genes. Cells from mice harboring a homozygous Creb mutation that disrupts BS2 exhibited increased S133 phosphorylation stoichiometry and elevated transcriptional bursts to cAMP. These findings provide insights into substrate targeting by PP2A holoenzymes and establish a new mechanism of CREB attenuation that has implications for understanding CREB signaling in cell growth, metabolism, synaptic plasticity, and other physiologic contexts.
环磷酸腺苷反应元件结合蛋白(CREB)是细胞生长、代谢和突触可塑性的重要调节因子。CREB 通过其固有无序的激酶诱导结构域(KID)内的进化保守丝氨酸残基(S133)的磷酸化而被激活。S133 在响应 cAMP、Ca 和其他刺激下的磷酸化会触发 KID 与 CREB 结合蛋白(CBP)的 KID 相互作用(KIX)结构域的关联,CBP 是一种组蛋白乙酰转移酶(HAT),可促进转录激活。在这里,我们研究了 CREB 磷酸化爆发后衰减的机制。我们表明,S133 的磷酸化通过蛋白磷酸酶 2A(PP2A)逆转,PP2A 通过其 B56 调节亚基被募集到 CREB 上。我们发现,位于 KID 羧基末端边界的 B56 结合位点(BS2)介导高亲和力 B56 结合,而位于 KID 氨基末端附近的第二个结合位点(BS1)通过相邻酪蛋白激酶(CK)磷酸化位点的磷酸化增强低亲和力结合。降低 B56 与 BS2 结合的突变会增加 S133 的基础和刺激诱导磷酸化,增加 CBP 与 CREB 的相互作用,并增强 CREB 依赖性报告基因的表达。携带有破坏 BS2 的 Creb 突变的同源纯合小鼠的细胞表现出增加的 S133 磷酸化计量和对 cAMP 的转录爆发增加。这些发现为 PP2A 全酶的底物靶向提供了深入的了解,并建立了一种新的 CREB 衰减机制,对理解细胞生长、代谢、突触可塑性和其他生理背景下的 CREB 信号转导具有重要意义。