NORMA:网络化妆师——一种用于网络注释可视化的网络工具。

NORMA: The Network Makeup Artist - A Web Tool for Network Annotation Visualization.

作者信息

Koutrouli Mikaela, Karatzas Evangelos, Papanikolopoulou Katerina, Pavlopoulos Georgios A

机构信息

Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari 16672, Greece.

Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari 16672, Greece; Department of Informatics and Telecommunications, University of Athens, Athens 15703, Greece.

出版信息

Genomics Proteomics Bioinformatics. 2022 Jun;20(3):578-586. doi: 10.1016/j.gpb.2021.02.005. Epub 2021 Jun 24.

Abstract

The Network Makeup Artist (NORMA) is a web tool for interactive network annotation visualization and topological analysis, able to handle multiple networks and annotations simultaneously. Precalculated annotations (e.g., Gene Ontology, Pathway enrichment, community detection, or clustering results) can be uploaded and visualized in a network, either as colored pie-chart nodes or as color-filled areas in a 2D/3D Venn-diagram-like style. In the case where no annotation exists, algorithms for automated community detection are offered. Users can adjust the network views using standard layout algorithms or allow NORMA to slightly modify them for visually better group separation. Once a network view is set, users can interactively select and highlight any group of interest in order to generate publication-ready figures. Briefly, with NORMA, users can encode three types of information simultaneously. These are 1) the network, 2) the communities or annotations of interest, and 3) node categories or expression values. Finally, NORMA offers basic topological analysis and direct topological comparison across any of the selected networks. NORMA service is available at http://norma.pavlopouloslab.info, whereas the code is available at https://github.com/PavlopoulosLab/NORMA.

摘要

网络化妆师(NORMA)是一种用于交互式网络注释可视化和拓扑分析的网络工具,能够同时处理多个网络和注释。预先计算的注释(例如,基因本体、通路富集、社区检测或聚类结果)可以上传并在网络中可视化,既可以作为彩色饼图节点,也可以以类似二维/三维维恩图的样式作为彩色填充区域。在不存在注释的情况下,提供自动社区检测算法。用户可以使用标准布局算法调整网络视图,或者让NORMA对其进行轻微修改以实现更好的视觉分组分离。一旦设置好网络视图,用户就可以交互式地选择并突出显示任何感兴趣的组,以生成可用于发表的图形。简而言之,使用NORMA,用户可以同时编码三种类型的信息。这些信息分别是:1)网络,2)感兴趣的社区或注释,3)节点类别或表达值。最后,NORMA提供基本的拓扑分析以及对任何选定网络进行直接的拓扑比较。NORMA服务可在http://norma.pavlopouloslab.info获取,而代码可在https://github.com/PavlopoulosLab/NORMA获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae2a/9801029/55a7b0727ea4/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索